Published online by Cambridge University Press: 08 November 2022
Main aim behind this study is to utilize 3D printing technique for designing and fabrication of a flexible wideband Vivaldi antenna for the upcoming 5 G systems. Frequency bands starting from 24 up to 65 GHz are receiving particular attention as they have potential for both high data rate communications and high-resolution radar applications. A Vivaldi antenna is used for its very wideband properties and planar design. The radiating structure covers a bandwidth of 25–65 GHz for a match better than −10 dB and demonstrates reasonably high gain and efficiency performance. The simulated radiation efficiency of the antenna remains above 90% for the entire bandwidth. Hence, the main advantage of this approach is that wideband or switched transceivers for future 5 G communications can be integrated using this concept without the need of complex matching networks.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.