Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T17:04:17.481Z Has data issue: false hasContentIssue false

Generation of 656 nm coherent red-light by frequency-doubled Nd:YLiF4/β-BaB2O4 laser for a compactsilver atoms optical clock

Published online by Cambridge University Press:  26 September 2012

J.-P. Loisel
Affiliation:
LISV, University of Versailles, 78035 Versailles, France
S. Topsu*
Affiliation:
LISV, University of Versailles, 78035 Versailles, France
L. Chassagne
Affiliation:
LISV, University of Versailles, 78035 Versailles, France
Y. Alayli
Affiliation:
LISV, University of Versailles, 78035 Versailles, France
P.R. Dahoo
Affiliation:
CNRS/Insu LATMOS-IPSL, University of Versailles, 78280 Guyancourt, France
P. Juncar
Affiliation:
LNE-INM/CNAM, 93210 Saint-Denis, France
*
Correspondence: suat.topsu@uvsq.fr
Get access

Abstract

We describe an efficient continuous-wave diode-pumped Nd:YLiF4 laseroscillating on the σ-polarized4F3/2-4I13/2transition at λω = 1312 nm. With a simplelinear cavity laser, we reached an intracavity power of 310 W at λ = 1312nm for 16 W of absorbed pump power(λp ~ 806 nm). A 0.25 W of tunableradiation (λ2ω = 656−658 nm) was obtainedby intracavity second-harmonic generation (SHG) with a 5 × 5 × 7mm3β-BaB2O4 crystal. Up to 10 mW oftunable single-frequency operation was observed using a 200 μm thin fusedsilica intracavity solid etalon. The optimal waist for a maximum conversion efficiency hasbeen calculated theoretically using Boyd and Kleiman model. For the 1312–656 nm SHG, wefound a walk-off parameter B = 8.99 and an optimal waist of 25μm. Comparing to the experimental measurement of the optimal waist, wefound a relative discrepancy of 2.84 × 10-2. This laser is dedicated to thespectroscopic study of silver atoms trapped in a buffer-gas-free paraffin coated Pyrexcell that will be used in a compact atomic optical clock.

Type
Research Article
Copyright
© EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Essen, L., Sutcliffen, D.S., Improvement to the national physical laboratory atomic clock, Nature 223, 602603 (1969) CrossRefGoogle Scholar
Margolis, H.S., Barwood, G.P., Huang, G., Klein, H.A., Lea, S.N., Szymaniec, K., Gill, P., Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion, Science 306, 1355 (2004) CrossRefGoogle Scholar
Barwood, G.P., Margolis, H.S., Huang, G., Gill, P., Klein, H.A., Measurement of the electric quadrupole moment of the 4d 2D5/2 level in 88Sr+, Phys. Rev. Lett. 93, 133001 (2004) CrossRefGoogle ScholarPubMed
Schneider, T., Peik, E., Tamm, C., Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions, Phys. Rev. Lett. 94, 230801 (2005) CrossRefGoogle Scholar
Oskay, W.H., Itano, W.M., Bergquist, J.C., Measurement of the 199Hg+ 5d 9 6s 2 2D5/2 electric quadrupole moment and a constraint on the quadrupole shift, Phys. Rev. Lett. 94, 163001 (2005) CrossRefGoogle Scholar
Dube, P., Madej, A.A., Bernard, J.E., Marmet, L., Boulanger, J.-S., Cundy, S., Electric quadrupole shift cancellation in single-ion optical frequency standards, Phys. Rev. Lett. 95, 033001 (2005) CrossRefGoogle ScholarPubMed
Oskay, W.H., Diddams, S.A., Donley, E.A., Fortier, T.M., Single-atom optical clock with high accuracy, Phys. Rev. Lett. 97, 020801 (2006) CrossRefGoogle ScholarPubMed
Badr, T., Plimmer, M.D., Juncar, P., Himbert, M.E., Louyer, Y., Knight, D.J.E., Observation by two-photon laser spectroscopy of the 4d 105s 2S1/2 → 4d 95s 2 2D5/2 clock transition in atomic silver, Phys. Rev. A 74, 062509 (2006) CrossRefGoogle Scholar
Uhlenberg, G., Dirscherl, J., Walther, H., Magneto-optical trapping of silver atoms, Phys. Rev. A 62, 063404 (2000) CrossRefGoogle Scholar
Bender, P.L., Hall, J.L., Garstang, R.H., Pichanik, F.M.J., Smith, W.W., Barger, R.L., West, J.B., Candidates for two-photon optical frequency standards, Bull. Am. Phys. Soc. 21, 599 (1976) Google Scholar
Topcu, S., Nasser, J., Daku, L.M.L., Fritzsche, S., Ab initio calculations of external-field shifts of the 661-nm quadrupolar clock transition in neutral Ag atoms, Phys. Rev. A 73, 42503 (2006) CrossRefGoogle Scholar
Itano, W.M., Bergquist, J.C., Hulet, R.G., Wineland, D.J., Radiative decay rates in Hg+ from observations of quantum jumps in a single ion, Phys. Rev. Lett. 59, 2732 (1987) CrossRefGoogle Scholar
Gozzini, S., Nienhuis, G., Mariotti, E., Paffuti, G., Gabbanini, C., Moi, L., Wall effects on light induced drift, Opt. Commun. 88, 341 (1992) CrossRefGoogle Scholar
Meucci, M., Mariotti, E., Bicchi, P., Marinelli, C., Moi, L., Light-induced atom desorption, Europhys. Lett. 25, 639 (1994) CrossRefGoogle Scholar
Mariotti, E., Atutov, S., Meucci, M., Bicchi, P., Marinelli, C., Moi, L., Dynamics of rubidium light-induced atom desorption (LIAD), Chem. Phys. 187, 111 (1994) CrossRefGoogle Scholar
Atutov, S.N., Biancalana, V., Bicchi, P., Marinelli, C., Mariotti, E., Meucci, M., Nagel, A., Nasyrov, K., Rachini, S., Moi, L., Light induced diffusion and desorption of alkali metals in a siloxane film : theory and experiment, Phys. Rev. A 60, 4693 (1999) CrossRefGoogle Scholar
Marinelli, C., Nasyrov, K.A., Bocci, S., Pieragnoli, B., Burchianti, A., Biancalana, V., Mariotti, E., Atutov, S.N., Moi, L., A new class of photo-induced phenomena in siloxane films, Eur. Phys. J. D 13, 231 (2001) CrossRefGoogle Scholar
Gozzini, S., Lucchesini, A., Light-induced potassium desorption from polydimethylsiloxane film, Eur. Phys. J. D 28, 157 (2004) CrossRefGoogle Scholar
Alexandrov, E.B., Balabas, M.V., Budker, D., English, D., Kimball, D.F., Li, C.-H., Yashchuk, V.V., Light-induced desorption of alkali-metal atoms from paraffin coating, Phys. Rev. A 66, 042903 (2002) CrossRefGoogle Scholar
Anderson, B.P., Kasevich, M.A., Loading a vapor-cell magneto-optic trap using light-induced atom desorption, Phys. Rev. A 63, 023404 (2001) CrossRefGoogle Scholar
Atutov, S.N., Calabrese, R., Guidiai, B., Rudavets, A.G., Scansani, E., Tomassetti, L., Biancalana, V., Burchianti, A., Marinelli, C., Mariotti, E., Moi, L., Veronesi, S., Fast and efficient loading of a Rb magneto-optical trap using light-induced atomic desorption, Phys. Rev. A 67, 053401 (2003) CrossRefGoogle Scholar
Burchianti, A., Bogi, A., Marinelli, C., Mariotti, E., Moi, L., Light-induced atomic desorption and related phenomena, Phys. Scr. T 135, 014012 (2009) CrossRefGoogle Scholar
J.-P. Loisel, Réalisation de sources laser à l’état solide et observation du phénomène LIAD : application au développement d’une horloge optique à atomes neutres d’argent, Doctoral thesis, University of Versailles, 2010
Louyer, Y., Balembois, F., Plimmer, M.D., Badr, T., Georges, P., Juncar, P., Himbert, M.E., Efficient cw operation of diode-pumped Nd :YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock, Opt. Commun. 217, 357362 (2003) CrossRefGoogle Scholar
Louyer, Y., Juncar, P., Plimmer, M.D., Badr, T., Balembois, F., Georges, P., Himbert, M.E., Doubled single-frequency Nd :YLF ring laser coupled to a passive nonresonant cavity, Appl. Opt. 43, 1773 (2004) CrossRefGoogle ScholarPubMed
Balembois, F., Boutard, D., Barnasson, E., Baudrier, M., Paries, R., Schwach, C., Forget, S., Efficient diode-pumped intracavity frequency-doubled cw Nd :YLF laser emitting in the red, Opt. Laser Technol. 38, 626630 (2006) CrossRefGoogle Scholar
Sarrouf, R., Sousa, V., Badr, T., Xu, G., Zondy, J.-J., Watt-level single-frequency tunable Nd :YLF/periodically poled KTiOPO4 red laser, Opt. Lett. 32, 2732 (2007) CrossRefGoogle Scholar
Sarrouf, R., Badr, T., Zondy, J.J., Intracavity second-harmonic generation of diode-pumped continuous-wave single-frequency 1.3 μm Nd :YLiF4 lasers, J. Opt. A : Pure Appl. Opt. 10, 104011 (2008) CrossRefGoogle Scholar
Vanherzeele, H., Thermal lensing measurement and compensation in a continuous-wave mode-locked Nd :YLF laser, Opt. Lett. 13, 369 (1988) CrossRefGoogle Scholar
Magni, V., Cerullo, G., De Silvestri, S., Svelto, O., Qian, L.J., Danailov, M., Intracavity frequency doubling of a cw high-power TEM00 Nd :YLF laser, Opt. Lett. 18, 21112113 (1993) CrossRefGoogle Scholar
Boyd, G.D., Kleinman, D.A., Parametric interaction of focused Gaussian light beams, J. Appl. Phys. 39, 3597 (1968) CrossRefGoogle Scholar
Lasers, edited by A.E. Siegman (University Science Books, 1986), Chap. 12