Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:39:30.128Z Has data issue: false hasContentIssue false

Stability of α-ketoglutaric acid simulating an impact-generated hydrothermal system: implications for prebiotic chemistry studies

Published online by Cambridge University Press:  07 January 2020

L. Ramírez-Vázquez*
Affiliation:
Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, CDMX, México
A. Negrón-Mendoza
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, CDMX, México
*
Author for correspondence: L. Ramírez-Vázquez, E-mail: luisalawliet@gmail.com

Abstract

Life originated on Earth possibly as a physicochemical process; thus, geological environments and their hypothetical characteristics on early Earth are essential for chemical evolution studies. Also, it is necessary to consider the energy sources that were available in the past and the components that could have contributed to promote chemical reactions. It has been proposed that the components could have been mineral surfaces. The aim of this work is to determine the possible role of mineral surfaces on chemical evolution, and to study of the stability of relevant molecules for metabolism, such as α-ketoglutaric acid (α-keto acid, Krebs cycle participant), using ionizing radiation and thermal energy as energy sources and mineral surfaces to promote chemical reactions. Preliminary results show α-ketoglutaric acid can be relatively stable at the simulated conditions of an impact-generated hydrothermal system; thus, those systems might have been plausible environments for chemical evolution on Earth.

Type
Research Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ames, DE, Jonasson, IR, Gibson, HL and Pope, KO (2006) Impact-generated hydrothermal system – constraints from the large paleoproterozoic sudbury crater, Canada. In: Cockell, C., Gilmour, I., Koeberl, C. (eds) Biological Processes Associated with Impact Events. Springer, Berlin, Heidelberg. pp. 55100.CrossRefGoogle Scholar
Bernal, JD (1951) The physical basis of life. Routledge and Kegan Paul, London, UK.Google Scholar
Cairns-Smith, AG (1966) The origin of life and the nature of the primitive gene. Journal of Theoretical Biology 10, 5388. https://doi.org/10.1016/0022-5193(66)90178-0.CrossRefGoogle ScholarPubMed
Calvin, M (1955) Chemical Evolution and the Origin of Life. U. S. Atomic Energy Commision, USA. Available at https://escholarship.org/content/qt6c258066/qt6c258066.pdf.CrossRefGoogle Scholar
Chatterjee, S (2016) A symbiotic view of the origin of life at hydrothermal impact crater-lakes. Physical Chemistry Chemical Physics 18, 2003320046. https://doi.org/10.1039/c6cp00550k.CrossRefGoogle ScholarPubMed
Cleaves, JH II, Michalkova Scott, A, Hill, FC, Leszczynski, J, Sahai, N and Hazen, R (2012) Mineral–organic interfacial processes: potential roles in the origins of life. Chemical Society Reviews 41, 55025525. https://doi.org/10.1039/c2cs35112a.CrossRefGoogle ScholarPubMed
Cockell, CS (2006) The origin and emergence of life under impact bombardment. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 18451856. https://doi.org/10.1098/rstb.2006.1908.CrossRefGoogle ScholarPubMed
Colín-García, M, Heredia, A, Cordero, G, Camprubí, A, Negrón-Mendoza, A, Ortega-Gutiérrez, F and Ramos-Bernal, S (2016) Hydrothermal vents and prebiotic chemistry: a review. Boletin de La Sociedad Geologica Mexicana 68, 599620. https://doi.org/10.18268/BSGM2016v68n3a13.CrossRefGoogle Scholar
Criquet, J and Karpel Vel Leitner, K (2011) Radiolysis of acetic acid aqueous solutions – effect of pH and persulfate addition. Chemical Engineering Journal 174, 504509.CrossRefGoogle Scholar
Criquet, J and Karpel Vel Leitner, K (2012) Electron beam irradiation of citric acid aqueous solutions containing persulfate. Separation and Purification Technology 88, 168173.CrossRefGoogle Scholar
Cruz-Castañeda, J, Colín-García, M and Negrón-Mendoza, A (2014) The possible role of hydrothermal vents in chemical evolution: succinic acid radiolysis and thermolysis. AIP Conference Proceedings 1607, 104.CrossRefGoogle Scholar
Daubar, I and Kring, D (2001) Impact-induced hydrothermal systems: heat sources and lifetimes. Lpsc, pp. 2021. Available at http://www.csa.com/partners/viewrecord.php?requester=gs&collection=TRD&recid=N0219109AH.Google Scholar
Draganić, IG (2005) Radiolysis of water: a look at its origin and occurrence in the nature. Radiation Physics and Chemistry 72, 181186. https://doi.org/10.1016/j.radphyschem.2004.09.012.CrossRefGoogle Scholar
Farmer, JD (2000) Hydrothermal systems: doorways to early biosphere evolution. GSA Today 10, 19. https://doi.org/10.1007/978-1-4020-5652-9.Google Scholar
Goldschmidt, V. M. (1952) Geochemical aspects of the origin of complex organic molecules on the earth, as precursors to organic life. New Biol 12, 97105.Google Scholar
Gomes, R, Levison, HF, Tsiganis, K and Morbidelli, A (2005) Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466469. https://doi.org/10.1038/nature03676.CrossRefGoogle ScholarPubMed
Hazen, RM (2005) Genesis: rocks, minerals, and the geochemical origin of life. Elements 1, 135137. https://doi.org/10.2113/gselements.1.3.135.CrossRefGoogle Scholar
Hazen, RM (2012) Geochemical origins of life. In: Knoll, A. H., Canfield, D. E., Konhauser, K. O. (eds) Fundamentals of Geobiology. Blackwell Publishing Ltd, USA. pp 315332. https://doi.org/10.1002/9781118280874.ch17.Google Scholar
Hazen, RM and Sverjensky, DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harbor Perspectives in Biology 2, a002162a002162. https://doi.org/10.1101/cshperspect.a002162.CrossRefGoogle ScholarPubMed
Iizuka, T, Horie, K, Komiya, T, Maruyama, S, Hirata, T, Hidaka, H and Windley, BF (2006) 4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada: evidence for early continental crust. Geology 34, 245248.CrossRefGoogle Scholar
Karam, PA and Leslie, SA (1999) Calculations of background beta-gamma radiation dose through geologic time. Health Physics 77, 662667. https://doi.org/10.1097/00004032-199912000-00010.Google ScholarPubMed
Koeberl, C (2013) The geochemistry and cosmochemistry of impacts. Treatise on Geochemistry: Second Edition 2, 73118. https://doi.org/10.1016/B978-0-08-095975-7.00130-3.Google Scholar
Kring, DA (2002) Cataclysmic bombardment throughout the inner solar system 3.9–4.0 Ga. Journal of Geophysical Research, 107, 5009. https://doi.org/10.1029/2001JE001529.CrossRefGoogle Scholar
Martin, W, Baross, JKelley, D and Russell, MJ (2008) Hydrothermal vents and the origin of life. Nature Reviews Microbiology 6, 805814. https://doi.org/10.1038/nrmicro1991.CrossRefGoogle ScholarPubMed
Montenegro, P, Valente, IM, Moreira Gonçalves, L, Rodrigues, JA and Araújo Barros, A (2011) Single determination of a-ketoglutaric acid and pyruvic acid in beer by HPLC whit UV detection. Analytical Methods 3, 12071212.CrossRefGoogle Scholar
Naumov, MV (2002) Impact-generated hydrothermal systems: data from Popigai, Kara, and Puchezh-Katunki impact structures. In Plado, J and Pesonen, LJ (eds) Impacts in Precambrian Shields. Impact Studies. Berlin: Springer, pp. 117171. https://doi.org/10.1007/978-3-662-05010-1_6.CrossRefGoogle Scholar
Negrón-Mendoza, A (2004) The role of clays in the origin of life. In: Seckbach, J. (ed) Origins, Cellular Origin, Life in Extreme Habitats and Astrobiology. Vol. 6, Springer, Dordrecht. pp 181194.Google Scholar
Negrón-Mendoza, A and Ponnamperuma, C (1976) Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid. Origins of Life 7, 191196.CrossRefGoogle ScholarPubMed
Negron-Mendoza, A and Ramos-Bernal, S (1998) Radiolysis of carboxylic acids adsorbed in clay minerals. Radiation Physics and Chemistry 52, 395399. https://doi.org/10.1016/S0969-806X(98)00059-0.CrossRefGoogle Scholar
Negrón-Mendoza, A and Ramos-Bernal, S (2015) Gamma irradiation of citric and isocitric acid in aqueous solution: relevance in prebiotic chemistry. AIP Conference Proceedings 1671, 020012.CrossRefGoogle Scholar
Negrón-Mendoza, A, Colín-García, M and Ramos-Bernal, S (2018) Radiolysis of succinic acid and its ammonium salt in aqueous solution, relevance in chemical evolution. Journal of Radioanalytical and Nuclear Chemistry 318, 22792284.CrossRefGoogle Scholar
Nelson, DL and Cox, MM (2012) Lehninger Biochemistry, 6th Edn. Macmillan Learning, USA.Google Scholar
Nisbet, EG and Sleep, NH (2001) The habitat and nature of early life. Nature 409, 10831091. https://doi.org/10.1038/35059210.CrossRefGoogle ScholarPubMed
Osinski, GR (2005) Hydrothermal activity associated with the Ries impact event, Germany. Geofluids 5, 202220. https://doi.org/10.1111/j.1468-8123.2005.00119.x.CrossRefGoogle Scholar
Osinski, GR, Lee, P, Parnell, J, Spray, JG and Baron, M (2005) A case study of impact-induced hydrothermal activity: the Haughton impact structure, Devon Island, Canadian High Arctic. Meteoritics & Planetary Science 40, 18591877. https://doi.org/10.1111/j.1945-5100.2005.tb00150.x.CrossRefGoogle Scholar
Pirajno, F (2009) Hydrothermal Processes and Mineral Systems. Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-8613-7.CrossRefGoogle Scholar
Zagórski, ZP and Kornacka, EM (2012) Ionizing radiation: friend or foe of the origins of life? Origins of Life and Evolution of Biospheres 42, 503505. https://doi.org/10.1007/s11084-012-9314-1.CrossRefGoogle ScholarPubMed