Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:52:44.295Z Has data issue: false hasContentIssue false

Long-term consequences of a short-term hypergravity load in a snail model

Published online by Cambridge University Press:  02 October 2014

Marina G. Martynova*
Affiliation:
Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
Sergej V. Shabelnikov
Affiliation:
Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia Department of Cytology and Histology, Faculty of Biology, Saint-Petersburg State University, St. Petersburg, Russia
Olga A. Bystrova
Affiliation:
Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
*

Abstract

Here we focused on the dynamic processes in the snail at different time after short-term hypergravity load (STHL) by monitoring the state of neuroendocrine and immune systems, the nucleic acid synthesis levels in the atrial cells, and the behaviour of the atrial granular cells (GCs). We observed that immediately after centrifugation (14 g for 15 min) in the snail haemolymph concentration of dopamine and noradrenaline (measured by high-performance liquid chromatography) and the number of circulating haemocytes and their proliferative activity (estimated by the direct cell counting and [3H]thymidine incorporation, respectively) increased significantly, whereas the concentration of adrenaline decreased. Twenty-four hours after STHL, the levels of catecholamines and haemocytes returned to their control values. In the atrial epicardial and endothelial cells, a notable drop of transcription activity (evaluated by [3H]uridine autoradiography) from the baseline in the immediate post-STHL period was followed by its gradual increase reaching a maximum at the day 5 and subsequent decrease to control value by the day 10. In endothelial cells, DNA-synthesizing activity (evaluated by [3H]thymidine autoradiography) equal to zero before and just after STHL, increased significantly at the day 5, and decreased by the day 10. The atrial GCs underwent total degranulation. Formed as a result small ungranulated cells exhibited DNA synthesis. Afterwards, most probably, the GCs divided and regranulated. One month after STHL the GC population had been restored. Overall, STHL has triggered an immediate reaction of the neuroendocrine and immune systems and initiated long-lasting processes at a cellular level, which included alterations in activity of nucleic acid syntheses in the epicardial and endothelial cells and remodelling of the GC population in the atrium.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aladaileh, S., Nair, S.V. & Raftos, D.A. (2008). Dev. Comp. Immunol. 32, 627636.CrossRefGoogle Scholar
Antonelli, A., Santucci, D., Amendola, T., Triaca, V., Corazzi, G., Francia, N., Fiore, M., Alleva, E. & Aloe, L. (2002). J. Gravit. Physiol. 9, 2938.Google Scholar
Balaban, P.M. et al. (2011). PLoS ONE 6(3), e17710.CrossRefGoogle Scholar
Belák, M., Kocisová, J. & Bod'a, K. (1977). Arch. Exp. Veterinarmed. 31, 749755. [in German]Google Scholar
Bózner, A., Boda, K., Dostál, J., Matĕjková, Z. & Devecka, V. (1993). Bratisl. Lek. Listy 94, 134138. [in Slovak]Google Scholar
Burwen, S.J. (1982). Tissue Cell 14, 125134.CrossRefGoogle Scholar
Bystrova, O.A., Shabelnikov, S.V. & Martynova, M.G. (2013). Acta Histochem. 116, 1419.CrossRefGoogle Scholar
Cananäu, S.A., Groza, P., Albu, A., Dragomir, C.T., Petrescu, A. & Zaharia, B. (1975). Aviat. Space Environ. Med. 46, 916921.Google Scholar
Cao, A., Ramos-Martínez, J.I. & Barcia, R. (2007). Int. Immunopharmacol. 7, 13951402.CrossRefGoogle Scholar
Chen, M., Yang, H., Xu, B., Wang, F. & Liu, B. (2008). J. Exp. Zool. 309A, 289296.CrossRefGoogle Scholar
Erofeeva, L.M., Krasnov, I.B. & Sapin, M.R. (2003). Bull. Exp. Biol. Med. 135, 190193.CrossRefGoogle Scholar
Gorgiladze, G.I., Korotkova, E.V., Kuznetsova, E.E., Mukhamedieva, L.N., Begrov, V.V. & Pepeliaev, I.V. (2010). Aviakosm. Ekolog. Med. 44, 6164. [in Russian]Google Scholar
Grigorenko, D.E., Krasnov, I.B. & Sapin, M.R. (2003). Morfologiia 123, 6064. [in Russian]Google Scholar
Groza, P., Carmaciu, R., Nicolescu, E., Cananau, S., Vrancianu, R. & Bobic, D. (1976). Life Sci. Space Res. 14, 319324.Google Scholar
Kartsova, L.A., Sidorova, A.A., Kazakov, V.A., Bessonova, E.A. & Yashin, A.Y. (2004). J. Anal. Chem. 59, 737741.CrossRefGoogle Scholar
Lacoste, A., Malham, S.K., Cueff, A., Poulet, S.A. (2001). Gen. Comp. Endocrinol. 122, 181188.CrossRefGoogle Scholar
Larra, F. & Droz, B. (1970). J. Microsc. 9, 845880.Google Scholar
Levin, B., Andersson, J. & Karlsson, T. (2007). Aviat. Space Environ. Med. 78, 587592.Google Scholar
Malagoli, D., Casarini, L., Sacchi, S. & Ottaviani, E. (2007). Fish Shellfish Immunol. 23, 171177.CrossRefGoogle Scholar
Malham, S.K., Lacoste, A., Gélébart, F., Cueff, A. & Poulet, S.A. (2003). J. Exp. Zool. A Comp. Exp. Biol. 295, 136144.CrossRefGoogle Scholar
Martynova, M.G., Krylova, M.I. & Bystrova, O.A. (2004). Tsitologiia 46, 448455. [in Russian]Google Scholar
Martynova, M.G., Bystrova, O.A., Shabelnikov, S.V., Margulis, B.A. & Prokofjeva, D.S. (2007). Cell Biol. Int. 33, 413419.CrossRefGoogle Scholar
Mednieks, M.I., Hand, A.R. & Grindeland, R.E. (1998). Aviat. Space Environ. Med. 69(Suppl 6), A28A36.Google Scholar
Mendez, M.G. & Janmey, P.A. (2012). Int. J. Biochem. Cell Biol. 44, 728732.CrossRefGoogle Scholar
Nielsen, E.H. & Clausen, J. (1982). Cell Tissue Res. 224, 465468.CrossRefGoogle Scholar
Nikogosova, M.O., Kaĭfadzhian, M.A., Barinian, S.B. & Akopian, A.A. (1991). Biull. Eksp. Biol. Med. 111, 417420. [in Russian]CrossRefGoogle Scholar
Ottaviani, E. (2006). Invert. Surviv. J. 3, 5063.Google Scholar
Roberts, S.B., Sunila, I. & Wikfors, G.H. (2012). J. Comp. Physiol. B 182, 4148.CrossRefGoogle Scholar
Santucci, D., Corazzi, G., Francia, N., Antonelli, A., Aloe, L. & Alleva, E. (2000). Neuroreport 11, 33533356.CrossRefGoogle Scholar
Schneider, S., Guardiera, S., Kleinert, J., Steinbacher, A., Abel, T., Carnahan, H. & Strüder, H.K. (2008). Stress 11, 339347.CrossRefGoogle ScholarPubMed
Shabelnikov, S.V., Bystrova, O.A. & Martynova, M.G. (2008). Cell Tissue Biol. 2, 451455.CrossRefGoogle Scholar
Shabelnikov, S.V., Bystrova, O.A., Ivanov, V.A., Margulis, B.A. & Martynova, M.G. (2009). J. Exp. Biol. 212, 32113220.CrossRefGoogle Scholar
Stauber, W.T., Fritz, V.K., Burkovskaya, T.E. & Ilyina-Kakueva, E.I. (1993). Exp. Mol. Pathol. 59, 8794.CrossRefGoogle Scholar
Zhou, Z., Wang, L., Yang, J., Zhang, H., Kong, P., Wang, M., Qiu, L. & Song, L. (2011a). Fish Shellfish Immunol. 30, 154162.CrossRefGoogle Scholar
Zhou, Z., Wang, L., Shi, X., Zhang, H., Gao, Y., Wang, M., Kong, P., Qiu, L. & Song, L. (2011b). Fish Shellfish Immunol. 31, 10651071.CrossRefGoogle Scholar