Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:58:55.772Z Has data issue: false hasContentIssue false

Buds of the tree: the highway to the last universal common ancestor

Published online by Cambridge University Press:  20 July 2016

Savio Torres de Farias*
Affiliation:
Laboratório de Genética Evolutiva Paulo Leminsk, departamento de Biologia Molecular, Universidade Federal da Paraiba, João Pessoa, Paraiba, Brasil.
Francisco Prosdocimi
Affiliation:
Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil. e-mail: prosdocimi@bioqmed.ufjr.br

Abstract

The last universal common ancestor (LUCA) has been considered as the branching point on which Bacteria, Archaea and Eukaryotes have diverged. However, the increased information relating to viruses’ genomes and the perception that many virus genes do not have homologs in other organisms opened a new discussion. Based on these facts, there has emerged the idea of an early LUCA that should be moved further into the past to include viruses, implicating that life should have originated before the appearance of cellular life forms. Another point of view from advocates of the RNA-world suggests that the origin of life happened a long time before organisms were capable of organizing themselves into cellular entities. Relevant data about the origin of ribosomes indicate that the catalytic unit of the large ribosomal subunit is what should actually be considered as the turning point that separated chemistry from biology. Other researchers seem to think that a tRNA was probably some sort of a strange attractor on which life has originated. Here we propose a theoretical synthesis that tries to provide a crosstalk among the theories and define important points on which the origin of life could have been originated and made more complex, taking into account gradualist assumptions. Thus, discussions involving the origin of biological activities in the RNA-world might lead into a world of progenotes on which viruses have been taken part until the appearance of the very first cells. Along this route of complexification, we identified some key points on which researchers may consider life as an emerging principle.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamford, D.H. (2003). Res. Microbiol. 154(4), 231236.Google Scholar
Caetano-Anolles, G. & Seufferheld, M.J. (2013). J. Mol. Microbiol. Biotechnol. 23(1–2), 152–77. doi: 10.1159/000346551.Google Scholar
Davidovich, C., Belousoff, M., Bashan, A. & Yonath, A. (2009). Res. Microbiol. 160(7), 487492. doi: 10.1016/j.resmic.2009.07.004.Google Scholar
Darwin, C. (1859). John Murray, Albermarle street, London.Google Scholar
Dawkins, R. (1977). Oxford University press, Oxford.Google Scholar
Delaye, L., Becerra, A. & Lazcano, A. (2005). Orig. Life. Evol. Biosph. 35(6), 537554.Google Scholar
Dworkin, J.P., Lazcano, A. & Miller, S.L. (2003). J. Theor. Biol. 222(1), 127134.Google Scholar
Farias, S.T., do Rêgo, T.G. & José, M.V. (2014a). Front. Genet. (5), 303. doi: 10.3389/fgene.2014.00303. eCollection 2014.Google Scholar
Farias, S.T., Rêgo, T.G. & José, M.V. (2014b). FEBS Open Bio. (4), 175178. doi: 10.1016/j.fob.2014.01.010. eCollection 2014.CrossRefGoogle Scholar
Filée, J. (2013). Curr. Opin. Virol. 3(5), 595599. doi: 10.1016/j.coviro.2013.07.003.Google Scholar
Forterre, P. (2006). Virus Res. 117(1), 516.CrossRefGoogle Scholar
Forterre, P. (2013a). Biol. Aujourdhui. 207(3), 153168. doi: 10.1051/jbio/2013018.Google Scholar
Forterre, P. (2013b). J. Mol. Biol. 425(23), 47144726. doi: 10.1016/j.jmb.2013.09.032.Google Scholar
Forterre, P. & Prangishvili, D. (2009). Res. Microbiol. 160(7), 466472. doi: 10.1016/j.resmic.2009.07.008.CrossRefGoogle Scholar
Forterre, P., Krupovic, M. & Prangishvili, D. (2014). Trends Microbiol. 22(10), 554558. doi: 10.1016/j.tim.2014.07.004.Google Scholar
Fox, G.E. (2010). Cold Spring Harb. Perspect. Biol. 2(9), a003483. doi: 10.1101/cshperspect.a003483.Google Scholar
Gilbert, W. (1986). Nature 319, 618.CrossRefGoogle Scholar
Glansdorff, N., Xu, Y. & Labedan, B. (2008). Biol. Direct. 9(3), 29. doi: 10.1186/1745-6150-3-29.Google Scholar
Gross, R., Fouxon, I., Lancet, D. & Markovitch, O. (2014). BMC Evol. Biol. 30(14), 265. doi: 10.1186/s12862-014-0265-1.Google Scholar
Guerrier-Takada, C., Gardiner, K., Marsh, T., Pace, N. & Altman, S. (1983). Cell (3 Pt2), 849857.CrossRefGoogle Scholar
Harris, J.K., Kelley, S.T., Spiegelman, G.B. & Pace, N.R. (2003). Genome Res. 13(3), 407412.Google Scholar
Hunding, A., Kepes, F., Lancet, D., Minsky, A., Norris, V., Raine, D., Sriram, K. & Root-Bernstein, R. (2006). Bioessays 28(4), 399412.Google Scholar
Hury, J., Nagaswamy, U., Larios-Sanz, M. & Fox, G.E. (2006). Orig. Life Evol. Biosph. 36(4), 421429.Google Scholar
Jheeta, S. (2015). Life 5(2), 14451453. doi: 10.3390/life5021445.Google Scholar
Kannan, L., Li, H., Rubinstein, B., Mushegian, A. (2013). Biol. Direct. 19(8), 32. doi: 10.1186/1745-6150-8-32.Google Scholar
Kim, K.M. & Caetano-Anollés, G. (2011). BMC Evol. Biol. 25(11), 140. doi: 10.1186/1471-2148-11-140.Google Scholar
Koonin, E.V. (2003). Nat. Rev. Microbiol. 1(2), 127136.Google Scholar
Koonin, E.V., Senkevich, T.G. & Dolja, V.V. (2006). Biol. Direct. 19(1), 29.Google Scholar
Kruger, K., Grabowski, P.J., Zaug, A.J., Sands, J., Gottschling, D.E. & Cech, T.R. (1982). Cell 31(1), 147157.CrossRefGoogle Scholar
Lazcano, A. & Miller, S.L. (1996). Cell 85(6), 793798.Google Scholar
Leipe, D.D., Aravind, L. & Koonin, E.V. (1999). Nucleic Acids Res. 27(17), 33893401.CrossRefGoogle Scholar
Markovitch, O. & Lancet, D. (2014). J Theor Biol. 21(357), 2634. doi: 10.1016/j.jtbi.2014.05.005.Google Scholar
Mayr, E. (2004). What Makes Biology Unique? Considerations on the Autonomy of a Scientific Discipline. Cambridge University Press, Cambridge, UK.Google Scholar
Moreira, D. & López-García, P.T. (2009). Nat. Rev. Microbiol. 7(4), 306311. doi: 10.1038/nrmicro2108.Google Scholar
Miller, S.L. (1953). Science 117, 528529.CrossRefGoogle Scholar
Mushegian, A. (2008). Front. Biosci. 1(13), 46574666.Google Scholar
Nasir, A. & Caetano-Anollés, G. (2015). Sci. Adv. 1(8), e1500527. doi: 10.1126/sciadv.1500527.CrossRefGoogle Scholar
Nasir, A., Kim, K.M. & Caetano-Anolles, G. (2012). BMC Evol. Biol. 24(12), 156. doi: 10.1186/1471-2148-12-156.Google Scholar
Norris, V., Reusch, R.N., Igarashi, K. & Root-Bernstein, R. (2014). Biol. Direct. 4(10), 28. doi: 10.1186/s13062-014-0028-3.Google Scholar
Osawa, S. (1995). Evolution of the Genetic Code. Oxford University Press, Oxford.Google Scholar
Ouzounis, C.A., Kunin, V., Darzentas, N. & Goldovsky, L. (2006). Res. Microbiol. 157(1), 5768.Google Scholar
Parker, E.T., Cleaves, H.J., Dworkin, J.P., Glavin, D.P., Callahan, M., Aubrey, A., Lazcano, A. & Bada, J.L. (2011). Proc. Natl. Acad. Sci. USA. 108(14), 55265531. doi: 10.1073/pnas.1019191108.Google Scholar
Parker, E.T., Zhou, M., Burton, A.S., Glavin, D.P., Dworkin, J.P., Krishnamurthy, R., Fernández, F.M. & Bada, J.L. (2014). Angew. Chem. Int. Ed. Engl. 53(31), 81328136. doi: 10.1002/anie.201403683.Google Scholar
Penny, D. & Poole, A. (1999). Curr. Opin. Genet. Dev. 9(6), 672677.Google Scholar
Petrov, A.S., Bernier, C.R., Hsiao, C., Norris, A.M., Kovacs, N.A., Waterbury, C.C., Stepanov, V.G., Harvey, S.C., Fox, G.E., Wartell, R.M. et al. (2014). Proc. Natl. Acad. Sci. USA. 111(28), 1025110256. doi: 10.1073/pnas.1407205111.Google Scholar
Root-Bernstein, R. (2012). Acc. Chem. Res. 45(12), 21692177. doi: 10.1021/ar200209k.CrossRefGoogle Scholar
Root-Bernstein, M. & Root-Bernstein, R. (2015). J. Theor. Biol. 21(367), 130158. doi: 10.1016/j.jtbi.2014.11.025.Google Scholar
Root Bernstein, R.S. & Dillon, P.F. (1997). J. Theo. Biol. 188, 447479.Google Scholar
Root-Bernstein, R.S. & Root-Bernstein, M.M. (2016). J. Theor. Biol. 397, 115127. doi: 10.1016/j.jtbi.2016.02.030.Google Scholar
Santos, M.A., Moura, G., Massey, S.E. & Tuite, M.F. (2004). Trends Genet. 20(2), 95102.Google Scholar
Shenhav, B., Oz, A. & Lancet, D. (2007). Philos. Trans. R. Soc. London B. Biol. Sci. 362(1486), 18131819.Google Scholar
Tamura, K. (2011). J. Biosci. 36(5), 921928.Google Scholar
Woese, C. (1998). Proc. Natl. Acad. Sci. USA. 95(12), 68546859.Google Scholar
Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Proc. Natl. Acad. Sci. USA. 87(12), 45764579.Google Scholar
Yarus, M. (2015). RNA 21(4), 769770. doi: 10.1261/rna.051086.115.Google Scholar