Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T04:22:37.208Z Has data issue: false hasContentIssue false

Analysis of mineral matrices of planetary soil analogues from the Utah Desert

Published online by Cambridge University Press:  11 March 2011

J.M. Kotler*
Affiliation:
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
R.C. Quinn
Affiliation:
Carl Segan Center, SETI institute NASA Ames Research Center, Moffett Field, CA, USA
B.H. Foing
Affiliation:
European Space Agency (ESA), ESTEC SRE-S, Postbus 299, 2200 AG Noordwijk, The Netherlands
Z. Martins
Affiliation:
Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
P. Ehrenfreund
Affiliation:
Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands Space Policy Institute, George Washington University, Washington, USA

Abstract

Phyllosilicate minerals and hydrated sulphate minerals have been positively identified on the surface of Mars. Studies conducted on Earth indicate that micro-organisms influence various geochemical and mineralogical transitions for the sulphate and phyllosilicate minerals. These minerals in turn provide key nutrients to micro-organisms and influence microbial ecology. Therefore, the presence of these minerals in astrobiology studies of Earth–Mars analogue environments could help scientists better understand the types and potential abundance of micro-organisms and/or biosignatures that may be encountered on Mars. Bulk X-ray diffraction of samples collected during the EuroGeoMars 2009 campaign from the Mancos Shale, the Morrison and the Dakota formations near the Mars Desert Research Station in Utah show variable but common sedimentary mineralogy with all samples containing quantities of hydrated sulphate minerals and/or phyllosilicates. Analysis of the clay fractions indicate that the phyllosilicates are interstratified illite–smectites with all samples showing marked changes in the diffraction pattern after ethylene glycol treatment and the characteristic appearance of a solvated peak at ∼17 Å. The smectite phases were identified as montmorillonite and nontronite using a combination of the X-ray diffraction data and Fourier–Transform Infrared Spectroscopy. The most common sulphate mineral in the samples is hydrated calcium sulphate (gypsum), although one sample contained detectable amounts of strontium sulphate (celestine). Carbonates detected in the samples are variable in composition and include pure calcium carbonate (calcite), magnesium-bearing calcium carbonate (dolomite), magnesium, iron and manganese-bearing calcium carbonate (ankerite) and iron carbonate (siderite). The results of these analyses when combined with organic extractions and biological analysis should help astrobiologists and planetary geologists better understand the potential relationships between mineralogy and microbiology for planetary missions.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battler, M.M., Clarke, J.D.A. & Coniglio, M. (2006). Implications for Martian field studies. In Mars Analog Research, ed. Clarke, J.D.A., pp. 5570. American Astronautical Science and Technology Series 111. Univiet Publishers, San Diego, California, USA.Google Scholar
Bibring, J.P., Langevin, Y., Gendrin, A., Gondet, B., Poulet, F., Berthe, M., Soufflot, A., Arvidson, R., Mangold, N., Mustard, J. et al. (2005). Science 307, 15761581.CrossRefGoogle Scholar
Bibring, J.P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, B., Mangold, N., Pinet, P., Forget, F. et al. (2006). Science 21, 400404.CrossRefGoogle Scholar
Bish, D.L., Carey, J.W., Vaniman, D.T. & Chipera, S.J. (2003). Icarus 164, 96103.CrossRefGoogle Scholar
Bish, D.L. & Vaniman, D.T. (2008). Workshop on Martian Phyllosilicates: Recorders of Aqueous Processes? held 21–23 October 2008 in Paris, France. LPI Contribution No. 1441, p. 1718.Google Scholar
Bjorkum, P.A. & Nadeau, P.H. (1998). APPEA J. 38, 453464.CrossRefGoogle Scholar
Boles, J.R. & Franks, S.G. (1979). J. Sedimentary Pet. 49, 5570.Google Scholar
Bridges, J.C., Catling, D.C., Saxton, J.M., Swindle, T.D., Lyon, I.C. & Grady, M.M. (2001). Space Sci. Rev. 96, 365392.CrossRefGoogle Scholar
Brown, K.M., Saffer, D.M. & Bekins, B.A. (2001). Earth Planet. Sci. Lett. 194, 97109.CrossRefGoogle Scholar
Bruce, C.H. (1984). Am. Assoc. Pet. Geol. Bull. 53, 7393.Google Scholar
Burst, J.F. (1969). Am. Assoc. Pet. Geol. Bull. 53, 7393.Google Scholar
Chan, M.A., Beitler, B., Parry, W.T., Ormo, J. & Komatsu, G. (2004). Nature 429, 731734.CrossRefGoogle Scholar
Chevrier, V., Poulet, F. & Bibring, J.-P. (2007). Nature 448, 6063.CrossRefGoogle Scholar
Clarke, J. & Stoker, C. (2011). Int. J. Astrobiol., (In press).Google Scholar
Clarke, J.D.A. & Pain, C.F. (2004). Am. Astronaut. Sci. Technol. Ser. 107, 131160.Google Scholar
Cole, T.G. & Shaw, H.F. (1982). Clay Miner. 18, 239252.CrossRefGoogle Scholar
Dong, H. (2005). Clay Sci. 12 (Suppl. 1), 612.Google Scholar
Dong, H., Peacor, D.R. & Freed, R.L. (1997). Am. Miner. 82, 379391.CrossRefGoogle Scholar
Ehrenfreund, P., Röling, W., Thiel, C., Quinn, R., Septhon, M., Stoker, C., Direito, S., Kotler, M., Martins, Z., Orzechowska, G.E. et al. (2011). Int. J. Astrobiol. (In press).Google Scholar
Foing, B., Stoker, C., Zavaleta, J., Ehrenfreund, P., Thiel, C., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J., et al. (2011). Int. J. Astrobiol. (In press).Google Scholar
Fortin, D., Ferris, F.G. & Scott, S.D. (1998). Am. Mineral. (In press) 83, 13991408.CrossRefGoogle Scholar
Freed, R.L. & Peacor, D.R. (1989). Am. Assoc. Pet. Geol. Bull. 73, 12231232.Google Scholar
Frost, R.L., Kloprogge, J.T. & Ding, Z. (2002). Spectrochim. Acta Part A – Mol. Biomol. Spectrosc. 58, 16571668.CrossRefGoogle Scholar
Hermosin, M.C. & Perez Rodriguez, J.L. (1981). Clays Clay Miner. 29, 143152.CrossRefGoogle Scholar
Kim, J.W., Dong, H., Seabaugh, J., Newell, S.W. & Eberl, D.D. (2004). Science 303, 830832.CrossRefGoogle Scholar
Kohler, B., Singer, A. & Stoffers, P. (1994). Clay Miner. 42, 689701.CrossRefGoogle Scholar
Kotler, J.M., Hinman, N.W., Scott, J.R., Yan, B. & Stoner, D.L. (2008). Astrobiology 8, 253266.CrossRefGoogle Scholar
Martins, Z., Sephton, M.A., Foing, B.H. & Ehrenfreund, P. (2011). Int. J. Astrobiol. (In press).Google Scholar
Moore, D.M. & Reynolds, R.C. (1997). X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, New York, 378 pp.Google Scholar
Mustard, J.F., Murchie, S.L., Pelkey, S.M., Ehlmann, B.L., Milliken, R.E., Grant, J.A., Bibring, J.-P., Poulet, F., Bishop, J., Dobrea, E.N. et al. (2008). 454, pp. 305309.Google Scholar
Nadeau, P.H. & Reynolds, R.C. (1981). Clays Clay Miner. 29, 249259.CrossRefGoogle Scholar
Ormo, J., Komatsu, G., Chan, M.A., Beitler, B. & Parry, W.T. (2004). Icarus 171, 295316.CrossRefGoogle Scholar
Orofino, V., Blanco, A., D'Elia, M.D., Licchelli, D., Font, S. & Marzo, G.A. (2010). Icarus 208, 202206.CrossRefGoogle Scholar
Peacor, D.R. (1992). In Reviews in Mineralogy: Minerals and Reactions at the Atomic Scale: Transmission Electron Microscopy, ed. Buseck, P.R., vol. 27, pp. 335380. BookCrafters Inc., Chelsea.CrossRefGoogle Scholar
Pevear, D.R. (1999). Proc. Natl Acad. Sci. U.S.A. 96, 34403446.CrossRefGoogle Scholar
Poulet, F., Bibring, J.-P., Mustard, J.F., Gendrin, A., Mangold, N., Langevin, Y., Arvidson, R.E., Gondet, B. & Gomez, C. (2005). Nature 438, 623627.CrossRefGoogle Scholar
Rampe, E.B., Kraft, M.D., Sharp, T.G., Williams, L. & Turner, A. (2008). American Geophysical Union, Fall Meeting 2008, abstract #P53B-1444.Google Scholar
Rogers, A.D. & Bandfield, J.L. (2009). Icarus 203, 437453.CrossRefGoogle Scholar
Saha, U.K., Iwasaki, K. & Sakurai, K. (2003). Clays Clay Min. 51, 481492.CrossRefGoogle Scholar
Schultze-Lam, S., Harauz, G. & Beveridge, T.J. (1992). J. Bacteriol. 174, 79717981.CrossRefGoogle Scholar
Schultze-Lam, S., Ferris, F.G., Sherwood-Lollar, B. & Gerits, J.P. (1996a). Can. J. Microbiol. 42, 147161.CrossRefGoogle Scholar
Schultze-Lam, S., Fortin, D. & Beveridge, T.J. (1996b). Chem. Geol. 132, 171181.CrossRefGoogle Scholar
Seidl, V. & Knop, O. (1969). Can. J. Chem. 47, 13611368.CrossRefGoogle Scholar
Stoker, C., Clarke, J., Direito, S., Martin, K., Zavaleta, J., Blake, D. & Foing, B.H. (2011). Int. J. Astrobiol., (In press).Google Scholar
Toulmin, P., Baird, A.K., Clark, B.C., EKil, K., Rose, H.J., Evans, P.H. & Kelliher, W.C. (1977). J. Geophys. Res. 82, 46254634.CrossRefGoogle Scholar
Ueshima, M. & Tazaki, K. (2001). Clays Clay Min. 49 (4), 292299.CrossRefGoogle Scholar
Weaver, C.E. (1960). Am Assoc. Pet. Geol. 44, 15051518.Google Scholar
Wyatt, M.B. & McSween, H.Y. (2002). Nature 417, 263266.CrossRefGoogle Scholar
Zhang, G., Kim, J., Dong, H. & Andre, J.S. (2007). Am. Mineral. 92, 14011410.CrossRefGoogle Scholar