Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T13:56:40.457Z Has data issue: false hasContentIssue false

SEM morphological studies of carbonates and the search for ancient life on Mars

Published online by Cambridge University Press:  24 June 2016

M. D'Elia*
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
A. Blanco
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
A. Galiano
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
V. Orofino
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
S. Fonti
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
F. Mancarella
Affiliation:
Department of Mathematics and Physics ‘Ennio De Giorgi’, University of Salento, Lecce, Italy
A. Guido
Affiliation:
Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
F. Russo
Affiliation:
Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy
A. Mastandrea
Affiliation:
Department of Biology, Ecology and Earth Science, University of Calabria, Cosenza, Italy

Abstract

Next space missions will investigate the possibility of extinct or extant life on Mars. Studying the infrared spectral modifications, induced by thermal processing on different carbonate samples (recent shells and fossils of different ages), we developed a method able to discriminate biogenic carbonates from their abiogenic counterparts. The method has been successfully applied to microbialites, i.e. bio-induced carbonates deposits, and particularly to stromatolites, the laminated fabric of microbialites, some of which can be ascribed to among the oldest traces of biological activity known on Earth. These results are of valuable importance since such carbonates are linked to primitive living organisms that can be considered as good analogues for putative Martian life forms. Considering that the microstructures of biogenic carbonate are different from those of abiogenic origin, we investigated the micromorphology of shells, skeletal grains and microbialites at different scale with a scanning electron microscope. The results show that this line of research may provide an alternative and complementary approach to other techniques developed in the past by our group to distinguish biotic from abiotic carbonates. In this paper, we present some results that can be of valuable interest since they demonstrate the utility for a database of images concerning the structures and textures of relevant carbonate minerals. Such data may be useful for the analysis of Martian samples, coming from sample return missions or investigated by future in situ explorations, aimed to characterize the near-subsurface of Mars in search for past or present life.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandfield, J.L., Glotch, T.D. & Christensen, P.R. (2003). Spectroscopic identification of carbonate minerals in the Martian dust. Science 301, 10841087.CrossRefGoogle ScholarPubMed
Banfield, J.F., Moreau, J.W., Chan, C.S., Welch, S.A. & Little, B. (2001). Mineralogical biosignatures and the search for life on Mars. Astrobiology 1, 447465.CrossRefGoogle ScholarPubMed
Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D. & Morse, D.E. (1996). Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 5658.Google Scholar
Berg, B.L., Ronholm, J., Applin, D.M., Mann, P., Izawa, M., Cloutis, E.A. & Whyte, L.G. (2014). Spectral features of biogenic calcium carbonates and implications for astrobiology. Int. J. Astrobiol. 13, 353365.CrossRefGoogle Scholar
Berman, A., Addadi, L. & Weiner, S. (1988). Interactions of sea-urchin skeleton macromolecules with growing calcite crystals – a study of intracrystalline proteins. Nature 331, 546548.Google Scholar
Bianciardi, G., Rizzo, V. & Cantasano, N. (2014). Opportunity Rover's image analysis: microbialites on Mars? Int. J. Aeronaut. Space Sci. 15, 419433.Google Scholar
Blanco, A., Orofino, V., D'Elia, M., Fonti, S., Mastandrea, A., Guido, A. & Russo, F. (2011). A spectroscopic method for identifying terrestrial biocarbonates and application to Mars. Icarus 213, 473479.Google Scholar
Blanco, A., Orofino, V., D'Elia, M., Fonti, S., Mastandrea, A., Guido, A. & Russo, F. (2013). Infrared spectroscopy of microbially induced carbonates and past life on Mars. Icarus 226, 119126.Google Scholar
Blanco, A., D'Elia, M., Orofino, V., Mancarella, F., Fonti, S., Mastandrea, A., Guido, A., Tosti, F. & Russo, F. (2014). Microbialites vs detrital micrites: degree of biogenicity, parameter suitable for Mars analogues. Planet. Space Sci. 97, 3442. doi: 10.1016/j.pss.2014.04.005.Google Scholar
Boynton, W.V. et al. (2009). Evidence for calcium carbonate at the Mars Phoenix landing site. Science 325, 6164.CrossRefGoogle ScholarPubMed
Cabane, M. et al. (2004). Did life exist on Mars? Search for organic and inorganic signatures, one of the goals for “SAM” (Sample Analysis at Mars). Adv. Space Res. 33, 22402245.Google Scholar
Cady, S.L., Farmer, J.D., Grotzinger, J.P., Schopf, J.W. & Steele, A. (2003). Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351367.CrossRefGoogle ScholarPubMed
Carter, J. & Poulet, F. (2012). Orbital identification of clays and carbonates in Gusev crater. Icarus 219, 250253.Google Scholar
D'Elia, M., Blanco, A., Licchelli, D., Orofino, V., Fonti, S., Pomati, F. & Burns, B.P. (2006). Infrared spectral properties of recent and fossil biominerals of Martian interest. Nuovo Cimento B 121, 833842. doi: 10.1393/ncb/i2007-10016-5.Google Scholar
Ehlmann, B.L. et al. (2008). Orbital identification of carbonate-bearing rocks on Mars. Science 322, 18281832.CrossRefGoogle ScholarPubMed
Folk, R.L. (1959). Practical petrographic classification of limestones. AAPG Bull. 43, 138.Google Scholar
Jahnke, H. & Ritzkowski, S. (1980). Die Fazies-Abfolge im Münder mergel der Steinbrüche bei Thüste (Ober-Jura, Hilsmulde). Berichte der Naturhistorischen Gesellschaft Hannover 123, 4562.Google Scholar
Konhauser, K. (2007). Introduction to Geomicrobiology. Blackwell Publishing, Oxford, UK, p. 425.Google Scholar
Lowenstam, H.A. (1981). Minerals formed by organisms. Science 211, 11261131.Google Scholar
Mann, S. (2001). Biomineralization: Principle and Concepts in Bioinorganic Materials Chemistry. Oxford University Press, New York.Google Scholar
Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. & Reeves, N.J. (1993). Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261, 12861292.Google Scholar
Michalski, J.R. & Niles, P.B. (2010). Deep crustal carbonate rocks exposed by meteor impacts on Mars. Nat. Geosci. 3, 751755.CrossRefGoogle Scholar
Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D. & Wright, S.P. (2013). Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 6, 133138. doi: 10.1038/NGEO1706.Google Scholar
Morris, R.V. et al. (2010). Identification of carbonate-rich outcrops on Mars by the Spirit Rover. Science 329, 421424.CrossRefGoogle ScholarPubMed
Ogg, J.G., Ogg, G. & Gradstein, F.M. (2008). The Concise Geologic Time Scale. Cambridge University Press, Cambridge, UK.Google Scholar
Orofino, V., Blanco, A., D'Elia, M., Licchelli, D. & Fonti, S. (2007). Infrared spectroscopy of carbonate samples of biotic origin relevant to Mars exobiological studies. Icarus 187, 457463.Google Scholar
Orofino, V., Blanco, A., D'Elia, M., Fonti, S. & Licchelli, D. (2009). Time-dependent degradation of biotic carbonates and the search for past life on Mars. Planet. Space Sci. 57, 632639.Google Scholar
Orofino, V., Blanco, A., D'Elia, M., Licchelli, D., Fonti, S. & Marzo, G.A. (2010). Study of terrestrial fossils in phyllosilicate-rich soils: implication in the search for biosignatures on Mars. Icarus 208, 202206.CrossRefGoogle Scholar
Palomba, E., Zinzi, A., Cloutis, E.A., D'Amore, M., Grassi, D. & Maturilli, A. (2009). Evidence for Mg-rich carbonates on Mars from a 3.9 µm absorption feature. Icarus 203, 5865.Google Scholar
Pollack, J.B., Roush, T.L., Witteborn, F.J., Wooden, D., Stoker, C. & Toon, O.B. (1990). Thermal emission spectra of Mars (5.4–10.5 µm): evidence for sulfates, carbonates, and hydrates. J. Geophys. Res. 95, 1459514627.Google Scholar
Ronholm, J. et al. (2014). A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions. Geobiology 12, 542556.CrossRefGoogle ScholarPubMed
Russo, F., Neri, C., Mastandrea, A. & Laghi, G.F. (1991). Depositional and diagenetic history of the Alpe di Specie (Seelandalpe) fauna (Carnian, Northeasten Dolomites). Facies 25, 187210.Google Scholar
Russo, F., Neri, C., Mastandrea, A. & Baracca, A. (1997). The mud mound nature of the Cassian platform margins of the Dolomites. A case history: the Cipit Boulders from Punta Grohmann (Sasso Piatto Massif, Northern Italy). Facies 36, 2536.Google Scholar
Stalport, F. et al. (2005). Search for past life on Mars: physical and chemical characterization of minerals of biotic and abiotic origin: part 1 – Calcite. Geophys. Res. Lett. 32, L23205. doi: 10.1029/2005GL023403.Google Scholar
Stalport, F., Coll, P., Szopa, C., Person, A., Navarro-Gonzalez, R., Cabane, M., Ausset, P. & Vaulay, M.J. (2007). Search for past life on Mars: physical and chemical characterization of minerals of biotic and abiotic origin: part 2 – Aragonite. Geophys. Res. Lett. 34, L24102. doi: 10.1029/2007GL031184.Google Scholar
Stolarski, J. & Mazur, M. (2005). Nanostructure of biogenic versus abiogenic carbonate crystals. Acta Palaeontol. Pol. 50, 847865.Google Scholar
Summons, R.E., Amend, J.P., Bish, D., Buick, R., Cody, G.D., Des Marais, D.J., Dromart, G., Eigenbrode, J.L., Knoll, A.H. & Sumner, D.Y. (2011). Preservation of Martian organic and environmental records: final report of the Mars biosignature working group. Astrobiology 11, 157181.Google Scholar
Tosti, F., Guido, A., Demasi, F., Mastandrea, A. & Russo, F. (2011). Biogeochemical characterization of automicrites building the Cipit Boulders of the Ladinian–Carnian platforms in the Dolomites (northeastern Italy). Rend. Online Soc. Geol. It. 17, 179183.Google Scholar
Tosti, F., Guido, A., Mastandrea, A., Demasi, F. & Russo, F. (2012). Rare Earth elements signature in Triassic samples from Punta Grohmann and Alpe di Specie (Dolomites, Italy): evidence of Cyanobacterial vs Sulphate Reducing Bacteria metabolic activities. Rend. Online Soc. Geol. It. 21, 943944.Google Scholar
Tosti, F., Mastandrea, A., Guido, A., Demasi, F., Russo, F. & Riding, R. (2014). Biogeo- chemical and redox record of mid-late Triassic reef evolution in the Italian Dolomites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 5266.CrossRefGoogle Scholar
Tucker, M. & Wright, V.P. (1990). Carbonate Sedimentology. Blackwell Science, Oxford, p. 482.Google Scholar
Wacey, D. (2009). Early Life on Earth: a Practical Guide. Springer Science & Business Media, Amsterdam, The Netherlands.Google Scholar
Westall, F. (2011). Early life: nature, distribution and evolution. In Origins and Evolution of Life: an Astrobiology Perspective, ed. Gargaud, M., López-Garcìa, P. & Martin, H., pp. 391413. Cambridge University Press, NY.Google Scholar
Westall, F., Loizeau, D., Foucher, F., Bost, N., Bertrand, M., Vago, J. & Kminek, G. (2013). Habitability on Mars from a microbial point of view. Astrobiology 13, 887897.CrossRefGoogle ScholarPubMed
Westall, F. et al. (2015). Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15, 9981029.Google Scholar
Wilkinson, B.H. & Given, R.K. (1986). Secular variation in the composition of abiotic marine carbonates: constraints on atmospheric carbon dioxide contents and oceanic Mg/Ca ratios during the Phanerozoic. J. Geol. 94, 321333.Google Scholar
Winter, A. & Seisser, S.G. (1994). Coccolithophores. Cambridge Univ. Press, New York.Google Scholar