Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T02:26:39.782Z Has data issue: false hasContentIssue false

On the parallels between cosmology and astrobiology: a transdisciplinary approach to the search for extraterrestrial life

Published online by Cambridge University Press:  07 April 2016

Charles Morphy D. Santos*
Affiliation:
Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André – SP, Brazil
Leticia P. Alabi
Affiliation:
Department of Logic and Philosophy of Science, Program Philosophy, Science and Values, University of the Basque Country (UPV/EHU), San Sebastian, Spain
Amâncio C. S. Friaça
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo – SP, Brazil
Douglas Galante
Affiliation:
Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas – SP, Brazil

Abstract

The establishment of cosmology as a science provides a parallel to the building-up of the scientific status of astrobiology. The rise of astrobiological studies is explicitly based on a transdisciplinary approach that reminds of the Copernican Revolution, which eroded the basis of a closed Aristotelian worldview and reinforced the notion that the frontiers between disciplines are artificial. Given the intrinsic complexity of the astrobiological studies, with its multifactorial evidences and theoretical/experimental approaches, multi- and interdisciplinary perspectives are mandatory. Insulated expertise cannot grasp the vastness of the astrobiological issues. This need for integration among disciplines and research areas is antagonistic to excessive specialization and compartmentalization, allowing astrobiology to be qualified as a truly transdisciplinary enterprise. The present paper discusses the scientific status of astrobiological studies, based on the view that every kind of life, Earth-based or not, should be considered in a cosmic context. A confluence between ‘astro’ and ‘bio’ seeks the understanding of life as an emerging phenomenon in the universe. Thus, a new epistemological niche is opened, pointing to the development of a pluralistic vision for the philosophy of astrobiology.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, G., Freeman, S. & Higginbotham, N. (1998). Complexity and human health: the case for a transdisciplinary paradigm. Cul. Med. Psychiatr. 22, 5592.Google Scholar
Allamandola, L.J. & Zare, R.N. (2002). Recognizing and interpreting biosignatures. Astrobiology 4(2), 605639.Google Scholar
Alpher, R.A., Bethe, H. & Gamow, G. (1948). The origin of chemical elements. Phys. Rev. 73, 803.Google Scholar
Bada, J.L. (2005). A field with a life of its own. Science 307, 46.Google Scholar
Bich, L. & Damiano, L. (2012). Life, autonomy and cognition: an organizational approach to the definition of the universal properties of life. Origins Life Evol. Biosph. 42(5), 389397.Google Scholar
Blumberg, B.S. (2011). Astrobiology, space and the future age of discovery. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci. 369, 508515.Google Scholar
Blumberg, B.S. (2003). The NASA Astrobiology Institute: early history and organization. Astrobiology 3(3), 463470.Google Scholar
Bowler, P. (2009). Evolution: The History of an Idea. University of California Press, Berkeley.Google Scholar
Brazelton, W.J. & Sullivan, W.T. III (2009). Understanding the nineteenth century origins of disciplines: lessons for astrobiology today? Int. J. Astrobiol. 8, 257266.Google Scholar
Burbidge, E.M., Burbidge, G.R., Fowler, W.A. & Hoyle, F. (1957). Synthesis of the elements in stars. Rev. Mod. Phys. 29(4), 547654.Google Scholar
Capellari, R.S. & Santos, C.M.D. (2012). Realism in systematics through biogeographical consilience. Cladistics 28, 170173.Google Scholar
Chela-Flores, J. (2013). From systems chemistry to systems astrobiology: life in the universe as an emergent phenomenon. Int. J. Astrobiol. 12, 816.Google Scholar
Chyba, C.F. (2005). Don't dismiss astrobiology. Science 308, 495496.Google Scholar
Chyba, C.F. & Hand, K.P. (2005). Astrobiology: the study of the living universe. Annu. Rev. Astron. Astrophys. 43(1), 3174.Google Scholar
Cleland, C.E. & Chyba, C.F. (2002). Defining ‘life’. Orig. Life Evol. Biosph. 32, 387393.Google Scholar
Cleland, C.E. & Copley, S.D. (2005). The possibility of alternative microbial life on Earth. Int. J. Astrobiol. 4(3–4), 165173.Google Scholar
Copernicus, N. (1543). De revolutionibus orbium coelestium. http://ads.harvard.edu/books/1543droc.book/ (accessed 11 November 2013).Google Scholar
Crowe, M.J. (1986). The Extraterrestrial Life Debate 1750–1900: The Idea of a Plurality of Worlds from Kant to Lowell. Cambridge University Press, Cambridge.Google Scholar
Crother, B.I. & Murray, C.M. (2015). Testable but not falsifiable? Cladistics 31, 573574.Google Scholar
Cusa, N. (1981). [1437/38]. On Learned Ignorance, translated by Hopkin, Jasper. Banning, Minneapolis.Google Scholar
Darling, D. (2001). Life Everywhere: The Maverick Science of Astrobiology. Basic Books, New York.Google Scholar
Davies, P.C.W. & Lineweaver, C.H. (2005). Finding a second sample of life on Earth. Astrobiology 5, 154163.Google Scholar
Davies, P.C.W. (1998). The Fifth Miracle: Search for the Origins of Life. Allen Lane Science, London.Google Scholar
Davies, P.C.W., Benner, S., Cleland, C.E., Lineweaver, C.H., McKay, C.P. & Wolfe-Simon, F. (2009). Signatures of a shadow biosphere. Astrobiology 9, 241249.Google Scholar
de la Escosura, A., Briones, C. & Ruiz-Mirazo, K. (2015). The systems perspective at the crossroads between chemistry and biology. J. Theor. Biol. 381, 1122.Google Scholar
Des Marais, D.J. & Walter, M.R. (1999). Astrobiology: exploring the origins, evolution, and distribution of life in the universe. Annu. Rev. Ecol. Syst. 30, 397420.Google Scholar
Des Marais, D.J. et al. (2008). The NASA astrobiology roadmap. Astrobiology 8, 715730.Google Scholar
Dick, S.J. (1982). Plurality of Worlds: The Origins of the Extraterrestrial Life Debate from Democritus to Kant. Cambridge University Press, Cambridge.Google Scholar
Dick, S.J. (1996). The Biological Universe: The Twentieth Century Extraterrestrial Life Debate and the Limits of Science. Cambridge University Press, Cambridge.Google Scholar
Dick, S.J. (2012). Cosmic evolution: the context for astrobiology and its cultural implications. Int. J. Astrobiol. 11, 203216.Google Scholar
Disney, M.J. (2000). The case against cosmology. Gen. Relativ. Gravit. 32(6), 11251134.Google Scholar
Dunér, D., Parthemore, J., Persson, E. & Holmberg, G. (eds). (2013). The History and Philosophy of Astrobiology: Perspectives on Extraterrestrial Life and the Human Mind. Cambridge Scholars Publishing, Newcastle upon Tyne.Google Scholar
Efstathiou, G. & Bond, J.R. (1999). Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon. Not. R. Astron. Soc. 304, 7597.Google Scholar
Ehrenfreund, P. (2011). A multiple-choice essay. Astrobiology 11, 737741.Google Scholar
Einstein, A. (1917). Kosmologische Betrachtungen zur Allgemeinen Relativitätstheorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften 8, 142152.Google Scholar
Emmeche, C. (1994). The Garden in the Machine: The Emerging Science of Artificial Life. Princeton University Press, Princeton.Google Scholar
Ernst, R. (2008). Societal responsibility of universities, wisdom and foresight leading to a better world. In Transdisciplinarity: ReCreating Integrated Knowledge, ed. Sommerville, M.A. & Rapport, D.J., pp. 121136. EOLSS Publishers, Oxford, UK.Google Scholar
Epicurus, (1964). Epicurus: Letters, Principle Doctrines, and Vatican Sayings, translated by Geer, Russel M.. Macmillan, New York.Google Scholar
Ezell, E.C. & Ezell, L.N. (1984). On Mars: Exploration of the Red Planet 1958–1978. NASA, U.S.Gov Printing office, Washington, DC.Google Scholar
Falcon, A. (2005). Aristotle and the Science of Nature. Cambridge University Press, Cambridge.Google Scholar
Fernández, J. & Moreno, A. (1992). Vida artificial, Eudema, Madrid. (Trad. francesa: La vie artificielle, Seuil, Paris (1997).Google Scholar
Fontenelle, B.B. (1998). [1686]. Entretiens sur la pluralité des mondes. Flanmarion, Paris.Google Scholar
Fraser, J.T. (1990). Of Time, Passion and Knowledge. Princeton University Press, Princeton.Google Scholar
Friaça, A.C.S. (2010). Subjetividade no reconhecimento da vida no universo. Revista Brasileira de Psicanálise 44(3), 93101.Google Scholar
Goldsmith, D. (1980). The Quest for Extraterrestrial Life: A Book of Readings. University Science Books, Mill Valley, California.Google Scholar
Google Ngram Viewer (2014). http://books.google.com/ngrams (accessed 13 March 2014).Google Scholar
Hanegraaf, W.J. (2002). New age religion. In Religions in the Modern World, ed. Woodhead, L., pp. 249263. Routledge, London.Google Scholar
Hawking, S. (2013). My Brief History. Bantam books, New York.Google Scholar
Hegde, S., Paulino-Lima, I.G., Kent, R., Kaltenegger, L. & Rothschild, L. (2015). Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc. Natl. Acad. Sci. 112(13), 38863891.Google Scholar
Helmreich, S. (2011). What Was Life? Answers from three limit biologies. Crit. Inq. 37, 671696.Google Scholar
Horneck, G., Rettberg, P., Walter, N. & Gomez, F. (2015). European landscape in astrobiology, results of the AstRoMap consultation. Acta Astronaut. 110, 145154.Google Scholar
Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15(3), 168173.Google Scholar
Jaeger, J. & Scheringer, M. (1998). Transdisziplinarität. Problemorientierung ohne Methodenzwang, GAIA 7, 1025.Google Scholar
Jakosky, B.M., Anbar, A.D., Des Marais, D., Morrison, D. & Pace, N.R. (2005). Don't dismiss astrobiology. Science 308, 495497.Google Scholar
Jantsch, E. (1970). Interdisciplinary and transdisciplinary university systems approach to education and innovation. Policy Sci. 1, 403428.Google Scholar
Kauffman, S. (1993). Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York.Google Scholar
Kauffman, S. (1995). At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford University Press, New York.Google Scholar
Kauffman, S.A. (2014). Prolegomenon to patterns in evolution. Biosystems 123, 38.Google Scholar
Kauffman, S. & Clayton, P. (2006). On emergence, agency, and organization. Biol. Phil. 21, 501521.Google Scholar
Kepler, J. (1609). Astronomia Nova. https://archive.org/details/Astronomianovaa00Kepl (accessed 11 November 2013).Google Scholar
Kessel, F. & Rosenfield, P.L. (2008). Toward transdisciplinary research: historical and contemporary perspectives. Am. J. Prev. Med. 35, 225234.Google Scholar
Kluge, A.G. (1997). Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13, 8196.Google Scholar
Koyré, A. (1957). From the Closed World to the Infinite Universe. John Hopkins Press, Baltimore and London.Google Scholar
Koyré, A. (1966). Études Galinéenes. Hermann, Paris.Google Scholar
Lafleur, L.J. (1941). Astrobiology, Leaflet No. 143. Astronomical Society of the Pacific, San Francisco.Google Scholar
Langton, C.G. (1998). Artificial Life: An Overview. MIT Press, Cambridge.Google Scholar
Laudan, L. (1977). Progress and its Problems: Towards a Theory of Scientific Growth. Routledg & Kegan Paul, London.Google Scholar
Lemaître, G. (1927). L'univers en expansion. Annales de Societé Scientifique de Bruxelles 47, 49.Google Scholar
Lineweaver, C.H. (2000). An estimate of the age distribution of terrestrial planets in the Universe: quantifying Metallicity as a selection effect. Icarus 151(2), 307313.Google Scholar
Luisi, P.L. & Kuruma, Y. (2014). Open questions on the origin of life (OQOL)—introduction to the special issue. Orig. Life Evol. Biosph. 44(4), 267268.Google Scholar
Mackay, A.L. (1991). A Dictionary of Scientific Quotations. Institute of Physics Publishing, Bristol and Philadelphia.Google Scholar
Maturana, H. & Varela, F.J. (1973). De máquinas y seres vivos: una teoría sobre la organización biológica. Editorial Universitaria, Santiago.Google Scholar
Marion, G.M., Fritsen, C.H., Eicken, H. & Payne, M.C. (2003). The search for life on Europa: limiting environmental factors, potential habitats, and Earth analogues. Astrobiology 3(4), 785811.Google Scholar
Mayr, E. (1982). The Growth of Biological Thought. Harvard University Press, Cambridge.Google Scholar
McKay, D.S., Gibson, E.K., Thomas-Keprta, K.L., Vali, H., Romanek, C.S., Clemett, S.J., Chillier, X.D., Maechling, C.R. & Zare, R.N. (1996). Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924930.Google Scholar
Moreno, A. & Mossio, M. (2015). Biological Autonomy: A Philosophical and Theoretical Enquiry, vol. 12. Springer, The Netherlands.Google Scholar
Morrison, D. (2001). The NASA astrobiology program. Astrobiology 1(1), 313.Google Scholar
Nicolescu, B. (1985). Nous, la particule et le monde. Le Mail, Paris.Google Scholar
Ojha, L., Wilhelm, M.B., Murchie, S.L., McEwen, A.S., Wray, J.H., Massé, M. & Chojnacki, M. (2015). Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829832.Google Scholar
Oliveira, C.F. & Barufaldi, J.P. (2009). Aliens are us. An innovative course in astrobiology. Int. J. Astrobiol. 8, 5161.Google Scholar
Penzias, A.A. & Wilson, R.W. (1965). A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419421.Google Scholar
Peretó, J. & Catalá, J. (2007). The renaissance of synthetic biology. Biol. Theory 2, 128130.Google Scholar
Piaget, J. (1972). L'Epistémologie des Relations Interdisciplinaires. In L'interdisciplinarité: problêmes d'enseigment et de recherche dans les universités, ed. Apostel, L., Berger, G., Briggs, A. & Guy Michaud, G., pp. 154171. Organisation de Coopération et de Développement Économique, Paris.Google Scholar
Pilcher, C.B. (2003). Biosignatures of early Earths. Astrobiology 3(3), 471486.Google Scholar
Popper, K. (1959). The Logic of Scientific Discovery. Hutchinson, London.Google Scholar
Popper, K. (1962). Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge, Kegan & Paul, London.Google Scholar
Popper, K. (1972). Objective Knowledge: An Evolutionary Approach. Oxford University Press, New York.Google Scholar
Rampelotto, P.H. (2010). Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2, 16021623.Google Scholar
Rieppel, O., Rieppel, M. & Rieppel, L. (2006). Logic in systematics. J. Zool. Syst. Evol. Res. 44, 186192.Google Scholar
Rodrigues, F., Galante, D., Paulino-Lima, I.G., Duarte, R.T.D., Friaça, A.C.S., Lage, C., Janot-Pacheco, E., Teixeira, R. & Horvath, J.E. (2012). Astrobiology in Brazil: early history and perspectives. Int. J. Astrobiol. 11, 189202.Google Scholar
Rosenfield, P.L. (1992). The potential of transdisciplinary research for sustaining and extending linkages between the health and social sciences. Soc. Sci. Med. 35, 13431357.Google Scholar
Rothschild, L.J. & Mancinelli, R.L. (2001). Life in extreme environments. Nature 409, 10921101.Google Scholar
Ruiz-Mirazo, K., Etxeberria, A., Moreno, A. & Ibáñez, J. (2000). Organisms and their place in biology. Theory Biosci. 119, 4367.Google Scholar
Ruiz-Mirazo, K. & Moreno, A. (2013). Synthetic biology: challenging life in order to grasp, use or extend it. Biol. Theory 8, 376382.Google Scholar
Ruiz-Mirazo, K., Peretó, J. & Moreno, A. (2004). A universal definition of life: autonomy and open-ended evolution. Orig. Life Evol. Biosph. 34, 323346.Google Scholar
Ruiz-Mirazo, K., Umerez, J. & Moreno, A. (2008). Enabling conditions for ‘open-ended evolution’. Biol. Phil. 23(1), 6785.Google Scholar
Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. (2014). Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114(1), 285366.Google Scholar
Ryle, M. & Clarke, R.W. (1961). An examination of the steady-state model in the light of some recent observations of radio sources. Mon. Not. R. Astron. Soc. 122, 349362.Google Scholar
Sadownik, J.W., Mattia, E., Nowak, P. & Otto, S. (2016). Diversification of self-replicating molecules. Nat. Chem. 8, 264269.Google Scholar
Santos, C.M.D. & Alabi, L.P. (2013). Todo biólogo é um pouco astrobiólogo. Ciência Hoje 302, 5657.Google Scholar
Santos, C.M.D. & Capellari, R.S. (2009). On reciprocal illumination and consilience in biogeography. Evol. Biol. 36, 407415.Google Scholar
Scharf, C. et al. (2015). A strategy for origins of life research. Astrobiology 15(12), 10311042.Google Scholar
Seager, S., Schrenk, M. & Bains, W. (2012). An astrophysical view of earth-based metabolic biosignature gases. Astrobiology 12(1), 6182.Google Scholar
Serrano, L. (2007). Synthetic biology: promises and challenges. Mol. Syst. Biol. 3, 158.Google Scholar
Sheridan, M.A. (2011). SETI's scope: How the Search for ExtraTerrestrial Intelligence became disconnected from new ideas about extraterrestrials. ProQuest, UMI Dissertation Publishing.Google Scholar
Simpson, G.G. (1964). The nonprevalence of humanoids. Science 143, 769775.Google Scholar
Staley, J.T. (2003). Astrobiology, the transcendent science: the promise of astrobiology as an integrative approach for science and engineering education and research. Curr. Opin Biotechnol. 14, 347354.Google Scholar
Strick, J.E. (2004). Creating a cosmic discipline: the crystallization and consolidation of exobiology, 1957–1973. J. Hist. Biol. 37, 131180.Google Scholar
Tomaska, L. (2011). Training biology's new romantics. Eur. Mol. Biol. Org. Rep. 12(5), 398400.Google Scholar
Turing, A.M. (1950). Computing machinery and intelligence. Mind 59(236), 433460.Google Scholar
Vogt, L. (2008). The unfalsifiability of cladograms and its consequences. Cladistics 24, 6273.Google Scholar
Ward, P. (2005). Life as We Do Not Know It: The NASA Search for (and Synthesis of) Alien Life. Viking Adult, New York.Google Scholar
Weber, M. (2004). The Essential Weber: a Reader, ed. Whims, S. Routledge, New York.Google Scholar
Weber, B.W. (2010). What is life? Defining life in the context of emergent complexity. Orig. Life Evol. Biosph. 40, 221229.Google Scholar