Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T18:55:01.423Z Has data issue: false hasContentIssue false

Mini-Review: Probing the limits of extremophilic life in extraterrestrial environment-simulated experiments

Published online by Cambridge University Press:  16 August 2012

Claudia A.S. Lage*
Affiliation:
Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
Gabriel Z.L. Dalmaso
Affiliation:
Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
Lia C.R.S. Teixeira
Affiliation:
Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
Amanda G. Bendia
Affiliation:
Laboratório de Radiações em Biologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
Ivan G. Paulino-Lima
Affiliation:
NASA-Ames Research Center, USA
Douglas Galante
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Eduardo Janot-Pacheco
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Brazil
Ximena C. Abrevaya
Affiliation:
Instituto de Astronomía y Física del Espacio, Universidad de Buenos Aires – CONICET, Argentina
Armando Azúa-Bustos
Affiliation:
Pontificia Universidad Catolica de Chile, Chile
Vivian H. Pelizzari
Affiliation:
Instituto Oceanográfico, Universidade de São Paulo, Brazil
Alexandre S. Rosado
Affiliation:
Instituto de Microbiologia Prof Paulo Góes, Universidade Federal do Rio de Janeiro, Brazil

Abstract

Astrobiology is a relatively recent scientific field that seeks to understand the origin and dynamics of life in the Universe. Several hypotheses have been proposed to explain life in the cosmic context throughout human history, but only now, technology has allowed many of them to be tested. Laboratory experiments have been able to show how chemical elements essential to life, such as carbon, nitrogen, oxygen and hydrogen combine in biologically important compounds. Interestingly, these compounds are ubiquitous. How these compounds were combined to the point of originating cells and complex organisms is still to be unveiled by science. However, our 4.5 billion years old Solar system appeared in a 10 billion years old Universe. Thus, simple cells such as micro-organisms may have had time to form in planets older than ours or in other suitable places in the Universe. One hypothesis related to the appearance of life on Earth is called panspermia, which predicts that microbial life could have been formed in the Universe billions of years ago, travelling between planets, and inseminating units of life that could have become more complex in habitable planets such as Earth. A project designed to test the viability of extremophile micro-organisms exposed to simulated extraterrestrial environments is in progress at the Carlos Chagas Filho Institute of Biophysics (UFRJ, Brazil) to test whether microbial life could withstand inhospitable environments. Radiation-resistant (known or novel ones) micro-organisms collected from extreme terrestrial environments have been exposed (at synchrotron accelerators) to intense radiation sources simulating Solar radiation, capable of emitting radiation in a few hours equivalent to many years of accumulated doses. The results obtained in these experiments reveal an interesting possibility of the existence of microbial life beyond Earth.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrevaya, X.C., Paulino-Lima, I.G., Galante, D., Rodrigues, F., Mauas, P.J., Corton, E. & Lage, C.A.S. (2011). Astrobiology 11(10), 10341040.CrossRefGoogle Scholar
Arrhenius, S. (1903). Umschau 7, 481485.Google Scholar
Atreyaa, S.K., Adamsa, E.Y., Niemannb, H.B., Demick-Montelarab, J.E., Owenc, T.C., Fulchignonid, M., Ferrie, F. & Wilson, E.H. (2006). Planet. Space Sci. 54, 11771187.CrossRefGoogle Scholar
Battista, J.R. (1997). Annu. Rev. Microbiol. 51, 203224.Google Scholar
Blasius, M., Sommer, S. & Hübscher, U. (2008). Crit. Rev. Biochem. Mol. Biol. 43(3), 221238.CrossRefGoogle Scholar
Brim, H., McFarlan, S.C., Fredrickson, J.K., Minton, K.W., Zhai, M., Wackett, L.P. & Daly, M.J. (2000). Nat. Biotechnol. 18(1), 8590.Google Scholar
Brim, H., Osborne, J.P., Kostandarithes, H.M., Fredrickson, J.K., Wackett, L.P. & Daly, M.J. (2006). Microbiology (Reading, England) 152(Pt 8), 24692477.CrossRefGoogle Scholar
Cavasso Filho, R.L., Homen, M.G., Fonseca, P.T. & Naves de Brito, A. (2007). Rev. Sci. Instrum. 78(11), 115104.Google Scholar
Cockell, C.S. (2001). Acta Astronaut. 49(11), 631640.Google Scholar
Cockell, C.S. et al. (2007). Astrobiology 7(1), 19.CrossRefGoogle Scholar
Connon, S.A., Lester, E.D., Shafaat, H.S., Obenhuber, D.C. & Ponce, A. (2007). J. Geophys. Res.–Biogeosci. 112(G04S17), 19.Google Scholar
Coulson, S.G. (2004). Inter. J. Astrobiol. 3(2), 151156.Google Scholar
Cox, M.M. & Battista, J.R. (2005). Nat. Rev. 3(11), 882892.Google Scholar
Dalmaso, G.Z.L., Paulino-Lima, I.G. & Lage, C. (2011). “Growth of Deinococcus radiodurans in Sergipano and Arabic Light oils”, http://www.astro.iag.usp.br/~spasa2011/SPASA2011_abstracts.pdf, Sao Paulo Advanced School of Astrobiology, 2011.Google Scholar
Daly, M.J. (2000). Curr. opin. biotechnol. 11(3), 280285.Google Scholar
Daly, M.J. (2009). Nat. Rev. 7(3), 237245.Google Scholar
Daly, M.J., Gaidamakova, E.K., Matrosova, V.Y., Kiang, J.G., Fukumoto, R., Lee, D.-Y., Wehr, N.B., Viteri, G.A., Berlett, B.S. & Levine, R.L. (2010). PLoS Biol. 5(9), e12570.Google Scholar
Daly, M.J. et al. (2007). PLoS Biol. 5(4), e92.Google Scholar
Daly, M.J., Ouyang, L., Fuchs, P. & Minton, K.W. (1994). J. Bacteriol. 176(12), 35083517.CrossRefGoogle Scholar
Dartnell, L.R., Hunter, S.J., Lovell, K.V., Coates, A.J. & Ward, J.M. (2010). Astrobiology 10(7), 717732.CrossRefGoogle Scholar
Dose, K., Bieger-Dose, A., Dillmann, R., Gill, M., Kerz, O., Klein, A., Meinert, H., Nawroth, T., Risi, S. & Stridde, C. (1995). Adv. Space Res. 16(8), 119129.Google Scholar
Hartley, A.J., Chong, G., Houston, J. & Mather, A.E. (2005). J. Geol. Soc. 162, 421424.Google Scholar
Horneck, G., Mileikowsky, C., Melosh, H.J., Wilson, J.W., Cuccinota, F.A. & Gladman, B. (2003). In: Astrobiology: the Quest for the Conditions of Life, ed. Horneck, G. & Baumstark-Khan, C. pp. 5776. Springer.Google Scholar
Horneck, G. et al. (2008). Astrobiology 8(1), 1744.Google Scholar
Horneck, G., Klaus, D.M. & Mancinelli, R.L. (2010). Microbiol. Mol. Biol. Rev. 74(1), 121156.Google Scholar
Lange, C.C., Wackett, L.P., Minton, K.W. & Daly, M.J. (1998). Nat. Biotechnol. 16(10), 929933.CrossRefGoogle Scholar
Lorenz, R.D. et al. (2008). Planet. Space Sci. 56(8), 11321144.CrossRefGoogle Scholar
Makarova, K.S., Aravind, L., Wolf, Y.I., Tatusov, R.L., Minton, K.W., Koonin, E.V. & Daly, M.J. (2001). Microbiol. Mol. Biol. Rev. 65(1), 4479.CrossRefGoogle Scholar
Maurette, M. (1998). Orig. Life Evol. Biosph. 28(4–6), 385412.Google Scholar
Mileikowsky, C., Cucinotta, F.A., Wilson, J.W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M. & Zheng, J.Q. (2000). Icarus 145(2), 391427.Google Scholar
Mitri, G., Showman, A.P., Lunine, J.I. & Lorenz, R.D. (2007). Icarus 186, 385394.Google Scholar
Navarro-Gonzalez, R. et al. (2003). Science 302(5647), 10181021.Google Scholar
Nicholson, W.L. (2009). Trends Microbiol. 17(6), 243250.Google Scholar
Nicholson, W.L., Schuerger, A.C. & Setlow, P. (2005). Mutat. Res. 571(1–2), 249264.Google Scholar
Niemann, H.B.et al. (2005). Nature 438(7069), 779784.Google Scholar
Olsson-Francis, K. & Cockell, C.S. (2010). J. Microbiol Methods 80(1), 113.Google Scholar
Osman, S., Peeters, Z., La Duc, M.T., Mancinelli, R., Ehrenfreund, P. & Venkateswaran, K. (2008). Appl. Environ. Microbiol. 74(4), 959970.Google Scholar
Paulino-Lima, I.G. (2010a). PhD Thesis, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, p. 252.Google Scholar
Paulino-Lima, I.G., Pilling, S., Janot-Pacheco, E., de Brito, A.N., Barbosa, J.A.R.G., Leitão, A.C. & Lage, C. (2010b). Planet. Space Sci. 58(10), 11801187.CrossRefGoogle Scholar
Paulino-Lima, I.G. et al. (2011). Astrobiology 11(9), 875882.Google Scholar
Paulino-Lima, I.G., Azua-Bustos, A., Vicuña, R., González-Silva, C., Salas, L., Teixeira, L., Rosado, A., Leitao, A.C. & Lage, C. (2012). Microb. Ecol., submitted.Google Scholar
Perron, J.T., Lamb, M.P., Koven, C.D., Fung, I.Y., Yager, E. & Ádámkovics, M. (2006). J. Geophys. Res. 111(11001), 114.Google Scholar
Pogoda de la Vega, U., Rettberg, P. & Reitz, G. (2007). Adv. Space Res. 40, 16721677.Google Scholar
Romanovskaya, V.A., Tashirev, A.B., Shilin, N.A., Chernaya, N.A., Rokitko, P.V. & Levishko, A.S. (2011). Mikrobiol. Z. 73(3), 38. (Ukranian paper).Google Scholar
Rothschild, L.J. & Mancinelli, R.L. (2001). Nature 409(6823), 10921101.Google Scholar
Schuerger, A.C., Mancinelli, R.L., Kern, R.G., Rothschild, L.J. & McKay, C.P. (2003). Icarus 165(2), 253276.CrossRefGoogle Scholar
Stofan, E.R. et al. (2007). Nature 445(7123), 6164.Google Scholar
Zahradka, K., Slade, D., Bailone, A., Sommer, S., Averbeck, D., Petranovic, M., Lindner, A.B. & Radman, M. (2006). Nature 443(7111), 569573.Google Scholar