Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T19:03:44.897Z Has data issue: false hasContentIssue false

Recent Advances in Atomic Modeling

Published online by Cambridge University Press:  12 April 2016

W. H. Goldstein*
Affiliation:
High Temperature Physics Division, Lawrence Livermore National Laboratory, Livermore, CA 94550USA

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Precision spectroscopy of solar plasmas has historically been the goad for advances in calculating the atomic physics and dynamics of highly ionized atoms. Recent efforts to understand the laboratory plasmas associated with magnetic and inertial confinement fusion, and with X-ray laser research, have played a similar role. Developments spurred by laboratory plasma research are applicable to the modeling of high-resolution spectra from both solar and cosmic X-ray sources, such as the photo-ionized plasmas associated with accretion disks. Three of these developments in large scale atomic modeling are reviewed: a new method for calculating large arrays of collisional excitation rates, a sum rule based method for extending collisional-radiative models and modeling the effects of autoionizing resonances, and a detailed level accounting calculation of resonant excitation rates in FeXVII.

Type
1. X-rays from a Hot Plasma
Copyright
Copyright © Cambridge University Press 1990

References

Bar-Shalom, A., Klapisch, M. and Oreg, J. 1988, Phys. Rev. A, 38, 1773.CrossRefGoogle Scholar
Bauche, J., Bauche-Arnoult, C. and Klapisch, M. 1988, Transition Arrays in the Spectra of Ionized Atoms, to appear in Advances in Atomic and Molecular Physics.Google Scholar
Chen, M. H., Crasseman, B., Matthews, D. L. 1975, Phys. Rev. Lett., 34, 1309.CrossRefGoogle Scholar
Chen, M. H. 1986, Phys. Rev. A, 34, 1073.CrossRefGoogle Scholar
Chen, M. H. 1988, private communication.Google Scholar
Condon, E. U.and Shortley, G. H. 1935, Theory of Atomic Spectra (London : Cambridge University Press)Google Scholar
Finkenthal, M., Stutman, D., Mandelbaum, P., Osterheld, A. L., Goldstein, W. H.and Chen, M. H. 1988, “Electron Density Measurement of a Pre-pinched Vacuum Spark Plasma Using Soft X-ray Titanium and Vanadium Emission,” UCRL-99351, to appear in J. Phys. B: At. Mol. Phys.Google Scholar
Goldstein, W. H., Walling, , Bailey, J., Chen, M. H., Fortner, R., Klapisch, M., Phillips, T. and Stewart, R. E. 1987, Phys. Rev. Lett., 58, 2300.CrossRefGoogle Scholar
Goldstein, W. H. and Reed, K. J. 1986, in Conference on Atomic Processes in Hot Dense Plasma, Jerusalem (unpublished).Google Scholar
Griffin, D.C., Pindzola, M. S.and Bottcher, C. 1985, Phys. Rev. A, 31, 568.CrossRefGoogle Scholar
Klapisch, M., Schwob, J. L., Fraenkel, B. S. and Oreg, J. 1977 J. Opt. Soc. Am., 61, 148.CrossRefGoogle Scholar
LaGattuta, K. and Hahn, Y. 1983, Phys. Rev. A, 27, 1675.CrossRefGoogle Scholar
Liedahl, D., Kahn, S., Osterheld, A. L.and Goldstein, W. H., in preparation.Google Scholar
Omar, G. and Hahn, Y. 1988, Phys. Rev. A, 37, 1983.CrossRefGoogle Scholar
Oreg, J. 1971 J. Math. Phys., 12, 1018.CrossRefGoogle Scholar
Oreg, J. 1975, Ph.D. Thesis (Hebrew University).Google Scholar
Oreg, J., Goldstein, W.H., Bar-Shalom, A. and Klapisch, M. 1988, UCRL-98456, “SumRules for the Collisional Radiative Model,” submitted, to Phys. Rev. A.Google Scholar
Reed, K. J., Chen, M. H.and Hazi, A. U. 1988, “Autoionizing Resonances in Electron Impact Excitation of Oxygen-like Selenium,” UCRL-98374, submitted to Phys. Rev. A.CrossRefGoogle Scholar
Roszman, L. J. 1979, Phys. Rev. A, 20, 673.CrossRefGoogle Scholar
Rugge, H. R.and McKenzie, D. L. 1985, Ap. J., 297, 338.CrossRefGoogle Scholar
Smith, B. W., Raymond, J. C., Mann, J. B.and Cowan, R. D. 1985, Ap. J., 298, 898.CrossRefGoogle Scholar