Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:02:06.742Z Has data issue: false hasContentIssue false

Pulsar Investigation Using Interstellar Scintillation

Published online by Cambridge University Press:  12 April 2016

T.V. Smirnova
Affiliation:
Astro Space Center, Lebedev Physical Institute, Moscow, Russia
V.I. Shishov
Affiliation:
Astro Space Center, Lebedev Physical Institute, Moscow, Russia

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the resolution of pulsar magnetospheres using interstellar scintillation. The two-dimensional spatial structure of pulsar emission zones can be obtained from analysis of diffractive scintillations at low frequencies. Based on refractive and diffractive scintillation of pulsars we can also reconstruct the distribution of turbulent plasma along the line of sight, and using this analysis a new approach to pulsar distance estimation can be made.

Type
Chapter Two Pulsars: Their Scattering and Intrinsic Properties
Copyright
Copyright © Kluwer 2001

References

Bisnovatyi-Kogan, G.S.: 1993, Asymmetric neutrino emission and formation of rapidly moving pulsars. AAT 3, 287.Google Scholar
Cordes, J.M., Weisberg, J.M. and Boriakoff, V.: 1983, An attempt to resolve pulsar magnetospheres using interstellar scintillations, ApJ 268, 370.Google Scholar
Pynzar’, A.V. and Shishov, V.I.: 1980, Pulsar scintillations and the parameters of interstellar plasma irregularities, Astron. Zh. 57, 1187.Google Scholar
Shitov, Yu.P., Malofeev, V.M. and Izvekova, V.A.: 1988, Superdispersion delay of low-frequency pulsar pulses. Pis’ma Astron. Zh. 14, 429.Google Scholar
Shishov, V.I., Malofeev, V.M., Pynzar’, A.V. and Smirnova, T.V.: 1995, The effect of turbulent interstellar plasma on the response of a radio interferometer, Astron. Rep. 39, 428.Google Scholar
Smirnova, T.V. and Shishov, V.I., 1989, The spatial structure of the emission sources of the pulsar PSR 1133+16, Pis’ma Astron. Zh. 15: 443, translated in Sov. Astron. Lett. 15: 191.Google Scholar
Smirnova, T.V.: 1991, The non-dipole magnetic field of PSR 1133+16, Pis’ ma Astron. Zh. 17: 797, translated in Sov. Astron. Lett. 17: 336.Google Scholar
Smirnova, T.V.: 1992, Lateral separation of pulsar emission regions obtained from interstellar scintillations, Pis’ma Astron. Zh. 18, 959, translated in Sov. Astron. Lett. 18, 392.Google Scholar
Smirnova, T.V., Shishov, V.I. and Malofeev, V.M.: 1996, The spatial structure of pulsar emission sources determined using interstellar scintillation, ApJ 462, 289.Google Scholar
Smirnova, T.V., Shishov, V.I. and Stinebring, D.R.: 1998, Refractive scintillations of pulsars, Astron. Zh. 75(6), 866, translated in Astron. Rep. 42(6), 766.Google Scholar
Stinebring, D.R., Smirnova, T.V., Xovis, J. et al: 1996, Pulsar flux monitoring and refractive scintillation, in: Johnton, S., Walker, M.A. and Bailes, M. (eds.), Proceedings of IAU Coll. 160, Sydney, Australia.Google Scholar
Taylor, J.H., Manchester, R.N. and Lyne, A.G.: 1993, Catalog of 558 pulsars, ApJ (Suppl. Series) 88: 529.Google Scholar
Wolszczan, A. and Cordes, J.M.: 1987, Interstellar interferometry of the PSR 1237+25, ApJ 320, L35.Google Scholar