No CrossRef data available.
Published online by Cambridge University Press: 12 April 2016
Numerical solutions of the general time-dependent gas-dynamical equations in linear adiabatic approximation are given for initial conditions imitating: (a) a central perturbation, (b) a boundary perturbation (in the convective envelope), and (c) a ‘shrinking’ of the Sun as a whole. For a variety of models of the Sun it is found that at the surface the radial component vr of velocity is much greater than the tangential component vt , and that the period T of stationary oscillations does not exceed 131m. The appearance at the surface of a g mode with period 160m is found to be improbable.
With the initial conditions adopted, a propagating wave is produced which is reflected successively from the centre to the periphery and back, producing 5-min oscillations at the surface of the Sun. Expansion of this wave into separate modes leads to a power spectrum qualitatively similar to that observed.
Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1-5 September, 1981.