Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:19:02.485Z Has data issue: false hasContentIssue false

A systematic review of the effectiveness of cohorting to reduce transmission of healthcare-associated C. difficile and multidrug-resistant organisms

Published online by Cambridge University Press:  27 March 2020

Cybele L. Abad*
Affiliation:
Department of Medicine, Section of Infectious Diseases, University of the Philippines, Manila-Philippine General Hospital, Manila, Philippines Division of Infectious Diseases, The Medical City, Pasig, Philippines
Anna K. Barker
Affiliation:
Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
Nasia Safdar*
Affiliation:
Division of Infectious Diseases, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, United States William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States Infection Control Department, University of Wisconsin–Madison, Madison, Wisconsin, United States
*
Authors for correspondence: Cybele L. Abad, E-mail address: crabad@up.edu, or cybelemd@yahoo.com. Or Nasia Safdar, E-mail: ns2@medicine.wisc.edu
Authors for correspondence: Cybele L. Abad, E-mail address: crabad@up.edu, or cybelemd@yahoo.com. Or Nasia Safdar, E-mail: ns2@medicine.wisc.edu

Abstract

Background:

Cohorting of patients and staff is a control strategy often used to prevent the spread of infection in healthcare institutions. However, a comprehensive evaluation of cohorting as a prevention approach is lacking.

Methods:

We performed a systematic review of studies that used cohorting as part of an infection control strategy to reduce hospital-acquired infections. We included studies published between 1966 and November 30, 2019, on adult populations hospitalized in acute-care hospitals.

Results:

In total, 87 studies met inclusion criteria. Study types were quasi-experimental “before and after” (n = 35), retrospective (n = 49), and prospective (n = 3). Case-control analysis was performed in 7 studies. Cohorting was performed with other infection control strategies in the setting of methicillin-resistant Staphylococcus aureus (MRSA, n = 22), Clostridioides difficile infection (CDI, n = 6), vancomycin-resistant Enterococcus (VRE, n = 17), carbapenem-resistant Enterobacteriaceae infections (CRE, n = 22), A. baumannii (n = 15), and other gram-negative infections (n = 5). Cohorting was performed either simultaneously (56 of 87, 64.4%) or in phases (31 of 87, 35.6%) to help contain transmission. In 60 studies, both patients and staff were cohorted. Most studies (77 of 87, 88.5%) showed a decline in infection or colonization rates after a multifaceted approach that included cohorting as part of the intervention bundle. Hand hygiene compliance improved in approximately half of the studies (8 of 15) during the respective intervention.

Conclusion:

Cohorting of staff, patients, or both is a frequently used and reasonable component of an enhanced infection control strategy. However, determining the effectiveness of cohorting as a strategy to reduce transmission of MDRO and C. difficile infections is difficult, particularly in endemic situations.

Type
Original Article
Copyright
© 2020 by The Society for Healthcare Epidemiology of America. All rights reserved.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Siegel, JD, Rhinehart, E, Jackson, M, Chiarello, L. 2007 Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. Am J Infect Control 2007;35:S65S164.CrossRefGoogle Scholar
Haley, RW, Cushion, NB, Tenover, FC, et al.Eradication of endemic methicillin-resistant Staphylococcus aureus infections from a neonatal intensive care unit. J Infect Dis 1995;171:614624.CrossRefGoogle ScholarPubMed
Murray-Leisure, KA, Geib, S, Graceley, D, et al.Control of epidemic methicillin-resistant Staphylococcus aureus. Infect Control Hosp Epidemiol 1990;11:343350.CrossRefGoogle ScholarPubMed
Jochimsen, EM, Fish, L, Manning, K, et al.Control of vancomycin-resistant enterococci at a community hospital: efficacy of patient and staff cohorting. Infect Control Hosp Epidemiol 1999;20:106109.CrossRefGoogle Scholar
Sample, ML, Gravel, D, Oxley, C, Toye, B, Garber, G, Ramotar, K.An outbreak of vancomycin-resistant enterococci in a hematology-oncology unit: control by patient cohorting and terminal cleaning of the environment. Infect Control Hosp Epidemiol 2002;23:468470.10.1086/502088CrossRefGoogle Scholar
Garcia-Lecona, DA, Garza-Gonzalez, E, Padilla-Orozco, M, et al.Outcomes of Clostridium difficile–infected patients managed in a common isolation unit compared with isolation in their bed of diagnosis. Am J Infect Control 2018;46:103104.CrossRefGoogle Scholar
Podnos, YD, Cinat, ME, Wilson, SE, Cooke, J, Gornick, W, Thrupp, LD.Eradication of multidrug-resistant Acinetobacter from an intensive care unit. Surg Infect 2001;2:297301.CrossRefGoogle Scholar
Rosenberger, LH, Hranjec, T, Politano, AD, et al.Effective cohorting and “superisolation” in a single intensive care unit in response to an outbreak of diverse multidrug-resistant organisms. Surg Infect 2011;12:345350.CrossRefGoogle Scholar
Schwaber, MJ, Carmeli, Y.An ongoing national intervention to contain the spread of carbapenem-resistant enterobacteriaceae. Clin Infect Dis 2014;58:697703.CrossRefGoogle ScholarPubMed
Viale, P, Tumietto, F, Giannella, M, et al.Impact of a hospital-wide multifaceted programme for reducing carbapenem-resistant Enterobacteriaceae infections in a large teaching hospital in northern Italy. Clin Microbiol Infect 2015;21:242247.CrossRefGoogle Scholar
Doherty, JA, Brookfield, DS, Gray, J, McEwan, RA.Cohorting of infants with respiratory syncytial virus. J Hosp Infect 1998;38:203206.CrossRefGoogle ScholarPubMed
Hall, CB, Geiman, JM, Douglas, RG Jr, Meagher, MP.Control of nosocomial respiratory syncytial viral infections. Pediatrics 1978;62:728732.Google ScholarPubMed
Tan, YM, Chow, PK, Tan, BH, et al.Management of inpatients exposed to an outbreak of severe acute respiratory syndrome (SARS). J Hosp Infect 2004;58:210215.CrossRefGoogle Scholar
Recommendations for preventing the spread of vancomycin resistance. Recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). Morbid Mortal Wkly Rept 1995;44:113.Google Scholar
Austin, DJ, Bonten, MJ, Weinstein, RA, Slaughter, S, Anderson, RM.Vancomycin-resistant enterococci in intensive-care hospital settings: transmission dynamics, persistence, and the impact of infection control programs. Proc Nat Acad Sci U S A 1999;96:69086913.CrossRefGoogle ScholarPubMed
Needleman, J, Buerhaus, P, Mattke, S, Stewart, M, Zelevinsky, K.Nurse-staffing levels and the quality of care in hospitals. N Engl J Med 2002;346:17151722.CrossRefGoogle ScholarPubMed
Shamseer, L, Moher, D, Clarke, M, et al.Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clin Res). 2015;350:g7647.Google ScholarPubMed
Downs, SH, Black, N.The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of healthcare interventions. J Epidemiol Comm Health 1998;52:377384.10.1136/jech.52.6.377CrossRefGoogle Scholar
Alfandari, S, Gois, J, Delannoy, PY, et al.Management and control of a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. Medecine et maladies infectieuses 2014;44:229231.10.1016/j.medmal.2014.03.005CrossRefGoogle Scholar
Apisarnthanarak, A, Pinitchai, U, Thongphubeth, K, Yuekyen, C, Warren, DK, Fraser, VJ.A multifaceted intervention to reduce pandrug-resistant Acinetobacter baumannii colonization and infection in 3 intensive care units in a Thai tertiary-care center: a 3-year study. Clin Infect Dis 2008;47:760767.CrossRefGoogle Scholar
Apisarnthanarak, A, Pinitchai, U, Warachan, B, Warren, DK, Khawcharoenporn, T, Hayden, MK.Effectiveness of infection prevention measures featuring advanced source control and environmental cleaning to limit transmission of extremely-drug resistant Acinetobacter baumannii in a Thai intensive care unit: an analysis before and after extensive flooding. Am J Infect Control 2014;42:116121.CrossRefGoogle Scholar
Arnow, P, Allyn, PA, Nichols, EM, Hill, DL, Pezzlo, M, Bartlett, RH.Control of methicillin-resistant Staphylococcus aureus in a burn unit: role of nurse staffing. J Trauma 1982;22:954959.CrossRefGoogle Scholar
Arruda, MC, de Aguiar, RS, Jardim, WM, et al.Cohorting to prevent acquisition of multidrug-resistant bacteria: an interrupted time series study. Am J Infect Control 2019;47:180185.CrossRefGoogle ScholarPubMed
Barbut, F, Yezli, S, Mimoun, M, Pham, J, Chaouat, M, Otter, JA.Reducing the spread of Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus on a burns unit through the intervention of an infection control bundle. Burns 2013;39:395403.CrossRefGoogle ScholarPubMed
Bartley, PB, Schooneveldt, JM, Looke, DF, Morton, A, Johnson, DW, Nimmo, GR.The relationship of a clonal outbreak of Enterococcus faecium vanA to methicillin-resistant Staphylococcus aureus incidence in an Australian hospital. J Hosp Infect 2001;48:4354.CrossRefGoogle Scholar
Batra, R, Cooper, BS, Whiteley, C, Patel, AK, Wyncoll, D, Edgeworth, JD.Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit. Clin Infect Dis 2010;50:210217.CrossRefGoogle Scholar
Carbonne, A, Thiolet, JM, Fournier, S, et al.Control of a multihospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Eur Surveill 2010;15:pii: 19734CrossRefGoogle Scholar
Cepeda, JA, Whitehouse, T, Cooper, B, et al.Isolation of patients in single rooms or cohorts to reduce spread of MRSA in intensive-care units: prospective two-centre study. Lancet 2005;365:295304.CrossRefGoogle ScholarPubMed
Cherifi, S, Delmee, M, Van Broeck, J, Beyer, I, Byl, B, Mascart, G.Management of an outbreak of Clostridium difficile–associated disease among geriatric patients. Infect Control Hosp Epidemiol 2006;27:12001205.CrossRefGoogle ScholarPubMed
Chotiprasitsakul, D, Santanirand, P, Thitichai, P, et al.Epidemiology and control of the first reported vancomycin-resistant Enterococcus outbreak at a tertiary-care hospital in Bangkok, Thailand. SE Asian J Trop Med Public Health 2016;47:494502.Google Scholar
Cohen, MJ, Block, C, Levin, PD, et al.Institutional control measures to curtail the epidemic spread of carbapenem-resistant Klebsiella pneumoniae: a 4-year perspective. Infect Control Hosp Epidemiol 2011;32:673678.CrossRefGoogle ScholarPubMed
Cohen, SH, Morita, MM, Bradford, M.A seven-year experience with methicillin-resistant Staphylococcus aureus. Am J Med 1991;91:233s237s.CrossRefGoogle ScholarPubMed
Cox, RA, Conquest, C, Mallaghan, C, Marples, RR.A major outbreak of methicillin-resistant Staphylococcus aureus caused by a new phage-type (EMRSA-16). J Hosp Infect 1995;29:87106.CrossRefGoogle Scholar
Curran, ET, Hamilton, K, Monaghan, A, McGinlay, M, Thakker, B.Use of a temporary cohort ward as part of an intervention to reduce the incidence of meticillin-resistant Staphylococcus aureus in a vascular surgery ward. J Hosp Infect 2006;63:374379.CrossRefGoogle Scholar
Debast, SB, Vaessen, N, Choudry, A, Wiegers-Ligtvoet, EA, van den Berg, RJ, Kuijper, EJ.Successful combat of an outbreak due to Clostridium difficile PCR ribotype 027 and recognition of specific risk factors. Clin Microbiol Infect 2009;15:427434.CrossRefGoogle ScholarPubMed
Decraene, V, Phan, HTT, George, R, et al.A large, refractory nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Escherichia coli demonstrates carbapenemase gene outbreaks involving sink sites require novel approaches to infection control. Antimicrob Agents Chemother 2018;62:pii: e01689-18.CrossRefGoogle ScholarPubMed
Duckworth, GJ, Lothian, JL, Williams, JD.Methicillin-resistant Staphylococcus aureus: report of an outbreak in a London teaching hospital. J Hosp Infect 1988;11:115.CrossRefGoogle Scholar
Faoagali, JL, Thong, ML, Grant, D.Ten years’ experience with methicillin-resistant Staphylococcus aureus in a large Australian hospital. J Hosp Infect 1992;20:113119.CrossRefGoogle Scholar
Farrington, M, Redpath, C, Trundle, C, Coomber, S, Brown, NM.Winning the battle but losing the war: methicillin-resistant Staphylococcus aureus (MRSA) infection at a teaching hospital. QJM 1998;91:539548.CrossRefGoogle ScholarPubMed
Fisher, D, Tambyah, PA, Lin, RT, et al.Sustained meticillin-resistant Staphylococcus aureus control in a hyper-endemic tertiary acute-care hospital with infrastructure challenges in Singapore. J Hosp Infect 2013;85:141148.CrossRefGoogle Scholar
Fitzpatrick, F, Murphy, OM, Brady, A, Prout, S, Fenelon, LE.A purpose built MRSA cohort unit. J Hosp Infect 2000;46:271279.CrossRefGoogle ScholarPubMed
Gagnaire, J, Gagneux-Brunon, A, Pouvaret, A, et al.Carbapenemase-producing Acinetobacter baumannii: an outbreak report with special highlights on economic burden. Medecine et maladies infectieuses 2017;47:279285.CrossRefGoogle ScholarPubMed
Gavalda, L, Soriano, AM, Camara, J, et al.Control of endemic extensively drug-resistant Acinetobacter baumannii with a cohorting policy and cleaning procedures based on the 1 room, 1 wipe approach. Am J Infect Control 2016;44:520524.CrossRefGoogle ScholarPubMed
Gilroy, SA, Miller Stahl, B, Noonan, C, et al.Reduction of hospital-acquired methicillin-resistant Staphylococcus aureus infection by cohorting patients in a dedicated unit. Infect Control Hosp Epidemiol 2009;30:203205.CrossRefGoogle Scholar
Gray, AP, Allard, R, Pare, R, et al.Management of a hospital outbreak of extensively drug-resistant Acinetobacter baumannii using a multimodal intervention including daily chlorhexidine baths. J Hosp Infect 2016;93:2934.CrossRefGoogle ScholarPubMed
Hussein, K, Rabino, G, Eluk, O, et al.The association between infection control interventions and carbapenem-resistant Enterobacteriaceae incidence in an endemic hospital. J Hosp Infect 2017;97:218225.CrossRefGoogle Scholar
Islam, J, Cheek, E, Navani, V, Rajkumar, C, Cohen, J, Llewelyn, MJ.Influence of cohorting patients with Clostridium difficile infection on risk of symptomatic recurrence. J Hosp Infect 2013;85:1721.CrossRefGoogle ScholarPubMed
Karanfil, LV, Murphy, M, Josephson, A, et al.A cluster of vancomycin-resistant Enterococcus faecium in an intensive care unit. Infect Control Hosp Epidemiol 1992;13:195200.CrossRefGoogle Scholar
Kassis-Chikhani, N, Saliba, F, Carbonne, A, et al.Extended measures for controlling an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France, 2003–2004. Eur Surveill 2010;15:pii: 19713.CrossRefGoogle Scholar
Khan, A, Lampitoc, M, Salaripour, M, McKernan, P, Devlin, R, Muller, MP.Rapid control of a methicillin-resistant Staphylococcus aureus (MRSA) outbreak in a medical surgical intensive care unit (ICU). Can J Infect Control 2009;24:1216.Google Scholar
Kim, NH, Han, WD, Song, KH, et al.Successful containment of carbapenem-resistant Enterobacteriaceae by strict contact precautions without active surveillance. Am J Infect Control 2014;42:12701273.CrossRefGoogle ScholarPubMed
Kochar, S, Sheard, T, Sharma, R, et al.Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 2009;30:447452.CrossRefGoogle ScholarPubMed
Kohlenberg, A, Brummer, S, Higgins, PG, et al.Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbiol 2009;58:14991507.10.1099/jmm.0.012302-0CrossRefGoogle Scholar
Kusachi, S, Nagao, J, Saida, Y, et al.Twenty years of countermeasures against postoperative methicillin-resistant Staphylococcus aureus infections. Surg Today 2011;41:630636.CrossRefGoogle ScholarPubMed
Lai, KK, Kelley, AL, Melvin, ZS, Belliveau, PP, Fontecchio, SA.Failure to eradicate vancomycin-resistant enterococci in a university hospital and the cost of barrier precautions. Infect Control Hosp Epidemiol 1998;19:647652.CrossRefGoogle Scholar
Landelle, C, Legrand, P, Lesprit, P, et al.Protracted outbreak of multidrug-resistant Acinetobacter baumannii after intercontinental transfer of colonized patients. Infect Control Hosp Epidemiol 2013;34:119124.10.1086/669093CrossRefGoogle ScholarPubMed
Landrum, ML, Murray, CK.Ventilator-associated pneumonia in a military deployed setting: the impact of an aggressive infection control program. J Trauma 2008;64:S123S127.CrossRefGoogle Scholar
Langer, AJ, Lafaro, P, Genese, CA, McDonough, P, Nahass, R, Robertson, C.Using active microbiologic surveillance and enhanced infection control measures to control an outbreak of health care-associated extended-spectrum beta-lactamase–producing Klebsiella pneumoniae infections—New Jersey, 2007. Am J Infect Control 2009;37:7375.CrossRefGoogle ScholarPubMed
Laurent, C, Rodriguez-Villalobos, H, Rost, F, et al.Intensive care unit outbreak of extended-spectrum beta-lactamase–producing Klebsiella pneumoniae controlled by cohorting patients and reinforcing infection control measures. Infect Control Hosp Epidemiol 2008;29:517524.CrossRefGoogle ScholarPubMed
Longo, B, Pantosti, A, Luzzi, I, et al.Molecular findings and antibiotic-resistance in an outbreak of Acinetobacter baumannii in an intensive care unit. Annali dell’Istituto superiore di sanita 2007;43:8388.Google Scholar
Lucet, JC, Armand-Lefevre, L, Laurichesse, JJ, et al.Rapid control of an outbreak of vancomycin-resistant enterococci in a French university hospital. J Hosp Infect 2007;67:4248.CrossRefGoogle Scholar
Marshall, C, Richards, M, McBryde, E.Do active surveillance and contact precautions reduce MRSA acquisition? A prospective interrupted time series. PloS One 2013;8:e58112.CrossRefGoogle ScholarPubMed
Mascini, EM, Troelstra, A, Beitsma, M, et al.Genotyping and preemptive isolation to control an outbreak of vancomycin-resistant Enterococcus faecium. Clin Infect Dis 2006;42:739746.CrossRefGoogle ScholarPubMed
Mayall, B, Martin, R, Keenan, AM, Irving, L, Leeson, P, Lamb, K.Blanket use of intranasal mupirocin for outbreak control and long-term prophylaxis of endemic methicillin-resistant Staphylococcus aureus in an open ward. J Hosp Infect 1996;32:257266.CrossRefGoogle Scholar
Meier, PA, Carter, CD, Wallace, SE, Hollis, RJ, Pfaller, MA, Herwaldt, LA.A prolonged outbreak of methicillin-resistant Staphylococcus aureus in the burn unit of a tertiary medical center. Infect Control Hosp Epidemiol 1996;17:798802.Google ScholarPubMed
Metan, G, Zarakolu, P, Otlu, B, et al.Emergence of colistin and carbapenem-resistant Acinetobacter calcoaceticus-Acinetobacter baumannii (CCR-Acb) complex in a neurological intensive care unit followed by successful control of the outbreak. J Infect Public Health 2019. doi: 10.1016/j.jiph.2019.09.013.Google Scholar
Molter, G, Seifert, H, Mandraka, F, et al.Outbreak of carbapenem-resistant Acinetobacter baumannii in the intensive care unit: a multi-level strategic management approach. J Hosp Infect 2016;92:194198.CrossRefGoogle ScholarPubMed
Montecalvo, MA, Jarvis, WR, Uman, J, et al.Infection-control measures reduce transmission of vancomycin-resistant enterococci in an endemic setting. Ann Intern Med 1999;131:269272.CrossRefGoogle Scholar
Moretti, ML, de Oliveira Cardoso, LG, Levy, CE, et al.Controlling a vancomycin-resistant enterococci outbreak in a Brazilian teaching hospital. Eur J Clin Microbiol Infect Dis 2011;30:369374.CrossRefGoogle Scholar
Morris-Downes, M, Smyth, EG, Moore, J, et al.Surveillance and endemic vancomycin-resistant enterococci: some success in control is possible. J Hosp Infect 2010;75:228233.CrossRefGoogle ScholarPubMed
Munoz-Price, LS, De La Cuesta, C, Adams, S, et al.Successful eradication of a monoclonal strain of Klebsiella pneumoniae during a K. pneumoniae carbapenemase-producing K. pneumoniae outbreak in a surgical intensive care unit in Miami, Florida. Infect Control Hosp Epidemiol 2010;31:10741077.CrossRefGoogle Scholar
Ohana, S, Denys, P, Guillemot, D, et al.Control of an ACC-1-producing Klebsiella pneumoniae outbreak in a physical medicine and rehabilitation unit. J Hosp Infect 2006;63:3438.CrossRefGoogle Scholar
Palmore, TN, Henderson, DK.Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches. Clin Infect Dis 2013;57:15931599.CrossRefGoogle ScholarPubMed
Palmore, TN, Michelin, AV, Bordner, M, et al.Use of adherence monitors as part of a team approach to control clonal spread of multidrug-resistant Acinetobacter baumannii in a research hospital. Infect Control Hosp Epidemiol 2011;32:11661172.CrossRefGoogle Scholar
Pirs, M, Cerar Kisek, T, Krizan Hergouth, V, et al.Successful control of the first OXA-48 and/or NDM carbapenemase-producing Klebsiella pneumoniae outbreak in Slovenia 2014–2016. J Hosp Infect 2019;101:142149.Google Scholar
Price, J, Cheek, E, Lippett, S, et al.Impact of an intervention to control Clostridium difficile infection on hospital- and community-onset disease: an interrupted time series analysis. Clin Microbiol Infect 2010;16:12971302.CrossRefGoogle ScholarPubMed
Raineri, E, Crema, L, De Silvestri, A, et al.Meticillin-resistant Staphylococcus aureus control in an intensive care unit: a 10 year analysis. J Hosp Infect 2007;67:308315.CrossRefGoogle Scholar
Reeme, AE, Bowler, SL, Buchan, BW, et al.Use of a cohorting-unit and systematic surveillance cultures to control a Klebsiella pneumoniae carbapenemase (KPC)–producing Enterobacteriaceae outbreak. Infect Control Hosp Epidemiol 2019;40:767773.CrossRefGoogle ScholarPubMed
Schmidt-Hieber, M, Blau, IW, Schwartz, S, et al.Intensified strategies to control vancomycin-resistant enterococci in immunocompromised patients. Int J Hematol 2007;86:158162.CrossRefGoogle ScholarPubMed
Schwaber, MJ, Lev, B, Israeli, A, et al.Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 2011;52:848855.CrossRefGoogle Scholar
Selkon, JB, Stokes, ER, Ingham, HR.The role of an isolation unit in the control of hospital infection with methicillin-resistant staphylococci. J Hosp Infect 1980;1:4146.CrossRefGoogle ScholarPubMed
Servais, A, Mercadal, L, Brossier, F, et al.Rapid curbing of a vancomycin-resistant Enterococcus faecium outbreak in a nephrology department. CJASN 2009;4:15591564.CrossRefGoogle Scholar
Singh, N, Squier, C, Wannstedt, C, Keyes, L, Wagener, MM, Cacciarelli, TV.Impact of an aggressive infection control strategy on endemic Staphylococcus aureus infection in liver transplant recipients. Infect Control Hosp Epidemiol 2006;27:122126.CrossRefGoogle ScholarPubMed
Sisirak, M, Hukic, M.An outbreak of multidrug-resistant Serratia marcescens: the importance of continuous monitoring of nosocomial infections. Acta medica academica 2013;42:2531.CrossRefGoogle ScholarPubMed
Struelens, MJ, Maas, A, Nonhoff, C, et al.Control of nosocomial transmission of Clostridium difficile based on sporadic case surveillance. Am J Med 1991;91:138s144s.CrossRefGoogle ScholarPubMed
Stumpfs, DJ, de Souza, SB, Konkewicz, LR, et al.The impact of a single ward for cohorting patients with infection due to multidrug-resistant organisms. Infect Control Hosp Epidemiol 2013;34:864865.CrossRefGoogle ScholarPubMed
Timmers, GJ, van der Zwet, WC, Simoons-Smit, IM, et al.Outbreak of vancomycin-resistant Enterococcus faecium in a haematology unit: risk factor assessment and successful control of the epidemic. Brit J Haematol 2002;116:826833.CrossRefGoogle Scholar
Vergara-Lopez, S, Dominguez, MC, Conejo, MC, Pascual, A, Rodriguez-Bano, J.Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-beta-lactamase–producing Klebsiella oxytoca. Clin Microbiol Infect 2013;19:E490E498.CrossRefGoogle Scholar
Wongcharoen, S, Luxamesathaporn, P, Khawcharoenporn, T, Rujanavech, S, Warren, DK, Apisarnthanarak, A.Impact of cohorting for multidrug-resistant organisms with and without real-time feedback. Infect Control Hosp Epidemiol 2013;34:648650.CrossRefGoogle ScholarPubMed
Agodi, A, Voulgari, E, Barchitta, M, et al.Containment of an outbreak of KPC-3–producing Klebsiella pneumoniae in Italy. J Clin Microbiol 2011;49:39863989.CrossRefGoogle ScholarPubMed
Ayraud-Thevenot, S, Huart, C, Mimoz, O, et al.Control of multidrug-resistant Acinetobacter baumannii outbreaks in an intensive care unit: feasibility and economic impact of rapid unit closure. J Hosp Infect 2012;82:290292.CrossRefGoogle Scholar
Kurup, A, Chlebicki, MP, Ling, ML, et al.Control of a hospital-wide vancomycin-resistant enterococci outbreak. Am J Infect Control 2008;36:206211.CrossRefGoogle ScholarPubMed
Nouvenne, A, Ticinesi, A, Lauretani, F, et al.Comorbidities and disease severity as risk factors for carbapenem-resistant Klebsiella pneumoniae colonization: report of an experience in an internal medicine unit. PloS One 2014;9:e110001.CrossRefGoogle Scholar
Ridwan, B, Mascini, E, van Der Reijden, N, Verhoef, J, Bonten, M.What action should be taken to prevent spread of vancomycin resistant enterococci in European hospitals? BMJ (Clin Res) 2002;324:666668.CrossRefGoogle ScholarPubMed
Cho, OH, Bak, MH, Baek, EH, Park, KH, Kim, S, Bae, IG.Successful control of carbapenem-resistant Acinetobacter baumannii in a Korean university hospital: a 6-year perspective. Am J Infect Control 2014;42:976979.CrossRefGoogle Scholar
Christiansen, KJ, Tibbett, PA, Beresford, W, et al.Eradication of a large outbreak of a single strain of vanB vancomycin-resistant Enterococcus faecium at a major Australian teaching hospital. Infect Control Hosp Epidemiol 2004;25:384390.CrossRefGoogle Scholar
Ciobotaro, P, Oved, M, Nadir, E, Bardenstein, R, Zimhony, O.An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute-care setting: from theory to practice. Am J Infect Control 2011;39:671677.CrossRefGoogle Scholar
Gregory, CJ, Llata, E, Stine, N, et al.Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect Control Hosp Epidemiol 2010;31:476484.CrossRefGoogle ScholarPubMed
Landelle, C, Pagani, L, Harbarth, S.Is patient isolation the single most important measure to prevent the spread of multidrug-resistant pathogens? Virulence 2013;4:163171.CrossRefGoogle ScholarPubMed
Henderson, DK.Managing methicillin-resistant staphylococci: a paradigm for preventing nosocomial transmission of resistant organisms. Am J Infect Control 2006;34:S46S54.CrossRefGoogle ScholarPubMed
Cooper, BS, Stone, SP, Kibbler, CC, et al.Isolation measures in the hospital management of methicillin-resistant Staphylococcus aureus (MRSA): systematic review of the literature. BMJ (Clin Res) 2004;329:533.CrossRefGoogle ScholarPubMed
Lopez-Garcia, M, Kypraios, T.A unified stochastic modelling framework for the spread of nosocomial infections. Interface 2018;15.Google ScholarPubMed
Milazzo, L, Bown, JL, Eberst, A, Phillips, G, Crawford, JW.Modelling of healthcare-associated infections: a study on the dynamics of pathogen transmission by using an individual-based approach. Comput Methods Prog Biomed 2011;104:260265.CrossRefGoogle Scholar
Satilmis, L, Vanhems, P, Benet, T.Outbreaks of vancomycin-resistant enterococci in hospital settings: a systematic review and calculation of the basic reproductive number. Infect Control Hosp Epidemiol 2016;37:289294.CrossRefGoogle ScholarPubMed
Supplementary material: File

Abad et al. Supplementary Materials

Abad et al. Supplementary Materials 1

Download Abad et al. Supplementary Materials(File)
File 94.4 KB
Supplementary material: File

Abad et al. Supplementary Materials

Abad et al. Supplementary Materials 2

Download Abad et al. Supplementary Materials(File)
File 134.3 KB
Supplementary material: File

Abad et al. Supplementary Materials

Abad et al. Supplementary Materials 3

Download Abad et al. Supplementary Materials(File)
File 175.7 KB