Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T21:24:32.613Z Has data issue: false hasContentIssue false

Isolation of Infectious Cystic Fibrosis Patients: Results of a Systematic Review

Published online by Cambridge University Press:  21 June 2016

Ralf-Peter Vonberg*
Affiliation:
Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
Petra Gastmeier
Affiliation:
Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Hannover, Germany
*
Institute for Medical Microbiology and Hospital Epidemiology, Medical School Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, GermanyVonberg.Ralf@MH-Hannover.DE

Abstract

Objective:

Respiratory tract infections significantly contribute to morbidity and mortality among cystic fibrosis (CF) patients. Therefore, pathogen transmission needs to be prevented. There are several guidelines for the care of CF patients, but no transparent systematic literature review has been published.

Methods:

We conducted a systematic literature review (January 1966 to September 2004) dealing with segregation of CF patients colonized with Burkholderia cepacia species, Pandoraea species, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, or Alcaligenes species. Quality of studies was evaluated by taking patient population size, existence of control-patients, patient randomization, diagnostic approach, and bacteria typing methods into account.

Results:

One hundred ninety-nine studies were found. Evidence and quality of 102 publications were evaluated. In 99 publications, recommendations concerning segregation measures for infectious CF patients were determined including a total of 11,576 patients. No randomized, controlled trials had been conducted. Fifty of 56 authors strongly recommended isolation of CF patients infected with B. cepacia or Pandoraea species. In 31 of 39 studies, interpatient spread of Pseudomonas aeruginosa was documented or had been brought to an end by isolation of patients. Only five studies had addressed S. maltophilia or Alcaligenes species.

Conclusions:

Patients colonized with B. cepacia or Pandoraea species are to be separated from noncolonized patients in single rooms. Patients harboring multidrug-resistant Pseudomonas aeruginosa, S. maltophilia, or Alcaligenes species may not share a room with immunocompromised patients, in intensive care units, or with other CF patients anywhere in the hospital.

Type
Orginal Articles
Copyright
Copyright © The Society for Healthcare Epidemiology of America 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Rajan, S, Saiman, L. Pulmonary infections in patients with cystic fibrosis. Semin Respir Infect 2002;17:4756.Google Scholar
2.Taccetti, G, Campana, S. Microbiologic data overview of Italian cystic fibrosis patients. Eur J Epidemiol 1997;13:323327.Google Scholar
3.Burns, JL, Saiman, L. Burkholderia cepacia infections in cystic fibrosis. Pediatr Infect Dis J 1999;18:155156.Google Scholar
4.Chaparro, C, Maurer, J, Gutierrez, C, et al.Infection with Burkholderia cepacia in cystic fibrosis: outcome following lung transplantation. Am J Respir Crit Care Med 2001;163:4348.Google Scholar
5.Govan, JR. Burkholderia cepacia in cystic fibrosis. N Engl J Med 1995;332:819820.Google Scholar
6.LiPuma, JJ, Stull, TL. Burkholderia cepacia in cystic fibrosis. N Engl J Med 1995;332:820821.Google Scholar
7.Woods, CW, Bressler, AM, LiPuma, JJ, et al.Virulence associated with outbreak-related strains of Burkholderia cepacia complex among a cohort of patients with bacteremia. Clin Infect Dis 2004;38:12431250.Google Scholar
8.Vandamme, P, Holmes, B, Vancanneyt, M, et al.Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 1997;47:11881200.Google Scholar
9.Vandamme, P, Holmes, B, Coenye, T, et al.Burkholderia cenocepacia sp. nov.: a new twist to an old story. Res Microbiol 2003;154:9196.CrossRefGoogle Scholar
10.Vandamme, P, Mahenthiralingam, E, Holmes, B, et al.Identification and population structure of Burkholderia stabilis sp. nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 2000;38:10421047.Google Scholar
11.Gillis, M, Van, TV, Bardin, R, et al.Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 1995;45:274289.Google Scholar
12.Coenye, T, LiPuma, JJ, Henry, D, et al.Burkholderia cepacia genomovar VI: a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. Int J Syst Evol Microbiol 2001;51:271279.Google Scholar
13.Vermis, K, Coenye, T, LiPuma, JJ, Mahenthiralingam, E, Nelis, HJ, Vandamme, P. Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. Int J Syst Evol Microbiol 2004;54:689691.Google Scholar
14.Coenye, T, Mahenthiralingam, E, Henry, D, et al.Burkholderia ambifaria sp. nov.: a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 2001;51:14811490.CrossRefGoogle Scholar
15.Vandamme, P, Henry, D, Coenye, T, et al.Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 2002;33:143149.Google Scholar
16.De Boeck, K, Malfroot, A, Van Schil, L, et al.Epidemiology of Burkholderia cepacia complex colonisation in cystic fibrosis patients. Eur Respir J 2004;23:851856.Google Scholar
17.Manno, G, Dalmastri, C, Tabacchioni, S, et al.Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian cystic fibrosis center. J Clin Microbiol 2004;42:14911497.Google Scholar
18.De Soyza, A, Morris, K, McDowell, A, et al.Prevalence and clonality of Burkholderia cepacia complex genomovars in UK patients with cystic fibrosis referred for lung transplantation. Thorax 2004;59:526528.CrossRefGoogle ScholarPubMed
19.Speert, DP, Henry, D, Vandamme, P, Corey, M, Mahenthiralingam, E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 2002;8:181187.Google Scholar
20.Mahenthiralingam, E, Vandamme, P, Campbell, ME, et al.Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. Clin Infect Dis 2001;33:14691475.CrossRefGoogle ScholarPubMed
21.Coenye, T, Falsen, E, Hoste, B, et al.Description of Pandoraea gen. nov. with Pandoraea apista sp. nov., Pandoraea pulmonicola sp. nov., Pandoraea pnomenusa sp. nov., Pandoraea sputorum sp. nov. and Pandoraea norimbergensis comb. nov. Int J Syst Evol Microbiol 2000;50(part 2):887899.Google Scholar
22.Jorgensen, IM, Johansen, HK, Frederiksen, B, et al.Epidemic spread of Pandoraea apista, a new pathogen causing severe lung disease in cystic fibrosis patients. Pediatr Pulmonol 2003;36:439446.CrossRefGoogle ScholarPubMed
23.Jones, AM, Webb, AKRecent advances in cross-infection in cystic fibrosis: Burkholderia cepacia complex, Pseudomonas aeruginosa, MRSA and Pandoraea spp. R Soc Med 2003;96(suppl 43):6672.Google ScholarPubMed
24.Kulich, M, Rosenfeld, M, Goss, CH, Wilmott, R. Improved survival among young patients with cystic fibrosis. J Pediatr 2003;142:631636.CrossRefGoogle ScholarPubMed
25.Alonso, A, Campanario, E, Martinez, JL. Emergence of multidrug-resis-tant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 1999;145(part 10):28572862.Google Scholar
26.Ciofu, O, Jensen, T, Pressler, T, Johansen, HK, Koch, C, Hoiby, N. Meropenem in cystic fibrosis patients infected with resistant Pseudomonas aeruginosa or Burkholderia cepacia and with hypersensitivity to beta-lactam antibiotics. Clin Microbiol Infect 1996;2:9198.Google Scholar
27.Pedersen, SS, Koch, C, Hoiby, N, Rosendal, KAn epidemic spread of multiresistant Pseudomonas aeruginosa in a cystic fibrosis centre. J Antimicrob Chemother 1986;17:505516.Google Scholar
28.Duff, AJ. Psychological consequences of segregation resulting from chronic Burkholderia cepacia infection in adults with CF. Thorax 2002;57:756758.CrossRefGoogle ScholarPubMed
29.Saiman, L, Siegel, J. Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission. Am J Infect Control 2003;31:S1S62.Google Scholar
30.Saiman, L, Siegel, J. Infection control recommendations for patients with cystic fibrosis: microbiology, important pathogens, and infection control practices to prevent patient-to-patient transmission. Infect Control Hosp Epidemiol 2003;24:S6S52.Google Scholar
31.Renders, N, van Belkum, A, Barth, A, Goessens, W, Mouton, J, Verbrugh, H. Typing of Pseudomonas aeruginosa strains from patients with cystic fibrosis: phenotyping versus genotyping. Clin Microbiol Infect 1996;1:261265.Google Scholar
32.Zembrzuska-Sadkowska, E, Sneum, M, Ojeniyi, B, Heiden, L, Hoiby, N. Epidemiology of Pseudomonas aeruginosa infection and the role of contamination of the environment in the Danish Cystic Fibrosis Centre. J Hosp Infect 1995;29:17.Google Scholar
33.Krzewinski, JW, Nguyen, CD, Foster, JM, Burns, JL. Use of random amplified polymorphic DNA PCR to examine epidemiology of Stenotrophomonas maltophilia and Achromobacter (Alcaligenes) xylosox-idans from patients with cystic fibrosis. J Clin Microbiol 2001;39:35973602.Google Scholar
34.Gladman, G, Connor, PJ, Williams, RF, David, TJ. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child 1992;67:192195.CrossRefGoogle ScholarPubMed
35.Demko, CAStern, RC, Doershuk, CF. Stenotrophomonas maltophilia in cystic fibrosis: incidence and prevalence. Pediatr Pulmonol 1998;25:304308.Google Scholar
36.Beringer, PM, Appleman, MD. Unusual respiratory bacterial flora in cystic fibrosis: microbiologic and clinical features. Curr Opin Pulm Med 2000;6:545550.Google Scholar
37.Pegues, DA, Carson, LA, Tablan, OC, et al.Acquisition of Pseudomonas cepacia at summer camps for patients with cystic fibrosis. J Pediatr 1994;124:694702.Google Scholar
38.Muhdi, K, Edenborough, FP, Gumery, L, et al.Outcome for patients colonised with Burkholderia cepacia in a Birmingham adult cystic fibrosis clinic and the end of an epidemic. Thorax 1996;51:374377.Google Scholar
39.Govan, JR, Brown, PH, Maddison, J, et al.Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993;342:1519.Google Scholar
40.Holmes, A, Nolan, R, Taylor, R, et al.An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J Infect Dis 1999;179:11971205.Google Scholar
41.Doring, G, Jansen, S, Noll, H, et al.Distribution and transmission of Pseudomonas aeruginosa and Burkholderia cepacia in a hospital ward. Pediatr Pulmonol 1996;21:90100.3.0.CO;2-T>CrossRefGoogle Scholar
42.Ledson, MJ, Gallagher, MJ, Corkill, JE, Hart, CA, Walshaw, MJ. Cross infection between cystic fibrosis patients colonised with Burkholderia cepacia. Thorax 1998;53:432436.Google Scholar
43.LiPuma, JJ, Dasen, SE, Nielson, DW, Stern, RC, Stull, TL. Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis. Lancet 1990;336:10941096.Google Scholar
44.Millar-Jones, L, Ryley, HC, Pauli, A, Goodchild, MC. Transmission and prevalence of Burkholderia cepacia in Welsh cystic fibrosis patients. Respir Med 1998;92:178183.CrossRefGoogle ScholarPubMed
45.Biddick, R, Spilker, T, Martin, A, LiPuma, JJ. Evidence of transmission of Burkholderia cepacia, Burkholderia multivorans and Burkholderia dolosa among persons with cystic fibrosis. FEMS Microbiol Lett 2003;228:5762.Google Scholar
46.Bertrand, X, Thouverez, M, Talon, D, et al.Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units. Intensive Care Med 2001;27:12631268.Google Scholar
47.Bergmans, DC, Bonten, MJ, van Tiel, FH, et al.Cross-colonisation with Pseudomonas aeruginosa of patients in an intensive care unit. Thorax 1998;53:10531058.Google Scholar
48.Tummler, B, Bosshammer, J, Breitenstein, S, et al.Infections with Pseudomonas aeruginosa in patients with cystic fibrosis. Behring Institut Mitteilungen 1997;98:249255.Google Scholar
49.Nelson, JW, Doherty, CJ, Brown, PH, Greening, AP, Kaufmann, ME, Govan, JR. Pseudomonas cepacia in inpatients with cystic fibrosis. Lancet 1991;338:1525.Google Scholar
50.Thomassen, MJ, Demko, CA, Klinger, JD, Stern, RC. Pseudomonas cepacia colonization among patients with cystic fibrosis: a new opportunist. Am Rev Respir Dis 1985;131:791796.Google ScholarPubMed
51.Gundermann, KO. Life-span of bacterial strains in dust as influenced by various degrees of air humidity. Zentralblatt für Bakteriologie 1972;156:422429.Google Scholar
52.Drabick, JA, Gracely, EJ, Heidecker, GJ, LiPuma, JJ. Survival of Burkholderia cepacia on environmental surfaces. J Hosp Infect 1996;32:267276.CrossRefGoogle ScholarPubMed
53.Emmanouilidou-Arseni, A, Koumentakou, I. Viability of Pseudomonas aeruginosa. J Bacteriol 1964;87:1253.Google Scholar
54.McDade, JJ, Hall, M. Survival of gram negative bacteria in the environment. American Journal of Hygiene 1964;80:192204.Google Scholar
55.Fegan, M, Francis, P, Hayward, AC, Davis, GH, Fuerst, JAPhenotypic conversion of Pseudomonas aeruginosa in cystic fibrosis. J Clin Microbiol 1990;28:11431146.CrossRefGoogle ScholarPubMed
56.Deretic, V, Schurr, MJ, Yu, H. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol 1995;3:351356.Google Scholar
57.Govan, JR, Deretic, V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996;60:539574.Google Scholar
58.McCallum, SJ, Gallagher, MJ, Corkill, JE, Hart, CALedson, MJ, Walshaw, MJ. Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 2002;57:559560.Google Scholar
59.Ledson, MJ, Gallagher, MJ, Walshaw, MJ. Chronic Burkholderia cepacia bronchiectasis in a non-cystic fibrosis individual. Thorax 1998;53:430432.Google Scholar
60.Agodi, A, Barchitta, M, Giannino, V, et al.Burkholderia cepacia complex in cystic fibrosis and non-cystic fibrosis patients: identification of a cluster of epidemic lineages. J Hosp Infect 2002;50:188195.Google Scholar
61.Siddiqui, AH, Mulligan, ME, Mahenthiralingam, E, et al.An episodic outbreak of genetically related Burkholderia cepacia among non-cystic fibrosis patients at a university hospital. Infect Control Hosp Epidemiol 2001;22:419422.Google Scholar
62.Miyawaki, H, Fujita, J, Takigawa, K, et al.Investigation of nosocomial respiratory infection due to Pseudomonas cepacia by arbitrarily primed polymerase chain reaction. Diagn Microbiol Infect Dis 1995;23:7783.Google Scholar
63.Schiller, NL, Alazard, MJ, Borowski, RS. Serum sensitivity of a Pseudomonas aeruginosa mucoid strain. Infect Immun 1984;45:748755.Google Scholar
64.Anonymous. Pseudomonas cepacia at summer camps for persons with cystic fibrosis. MMWR 1993;42:456459.Google Scholar
65.Agodi, A, Mahenthiralingam, E, Barchitta, M, Giannino, V, Sciacca, A, Stefani, S. Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status. J Clin Microbiol 2001;39:28912896.Google Scholar
66.Armstrong, DS, Nixon, GM, Carzino, R, et al.Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am J Respir Crit Care Med 2002;166:983987.Google Scholar
67.Armstrong, D, Bell, S, Robinson, M, et al.Evidence for spread of a clonal strain of Pseudomonas aeruginosa among cystic fibrosis clinics. J Clin Microbiol 2003;41:22662267.Google Scholar
68.Bosshammer, J, Fiedler, B, Gudowius, P, von der Hardt, H, Romling, U, Tummler, B. Comparative hygienic surveillance of contamination with pseudomonads in a cystic fibrosis ward over a 4-year period. J Hosp Infect 1995;31:261274.Google Scholar
69.Cheng, KSmyth, RL, Govan, JR, et al.Spread of beta-lactam-resistant Pseudomonas aeruginosa in a cystic fibrosis clinic. Lancet 1996;348:639642.Google Scholar
70.Clode, FE, Kaufmann, ME, Malnick, H, Pitt, TL. Distribution of genes encoding putative transmissibility factors among epidemic and nonepi-demic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol 2000;38:17631766.Google Scholar
71.Denton, M, Todd, NJ, Kerr, KG, Hawkey, PM, Littlewood, JM. Molecular epidemiology of Stenotrophomonas maltophilia isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. J Clin Microbiol 1998;36:19531958.Google Scholar
72.Farrell, PM, Shen, G, Splaingard, M, et al.Acquisition of Pseudomonas aeruginosa in children with cystic fibrosis. Pediatrics 1997;100:E2.Google Scholar
73.Kosorok, MR, Jalaluddin, M, Farrell, PM, et al.Comprehensive analysis of risk factors for acquisition of Pseudomonas aeruginosa in young children with cystic fibrosis. Pediatr Pulmonol 1998;26:8188.Google Scholar
74.Fegan, M, Francis, P, Hayward, AC, Fuerst, JA. Heterogeneity, persistence, and distribution of Pseudomonas aeruginosa genotypes in cystic fibrosis patients. J Clin Microbiol 1991;29:21512157.Google Scholar
75.Greenberg, D, Yagupsky, P, Peled, N, Goldbart, A, Porat, N, Tal, A. Lack of evidence of transmission of Pseudomonas aeruginosa among cystic fibrosis patients attending health camps at the Dead Sea, Israel. Isr Med Assoc J 2004;6:531534.Google Scholar
76.Grothues, D, Koopmann, U, von der Hardt, H, Tummler, B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988;26:19731977.Google Scholar
77.Hoogkamp-Korstanje, JA, van der Laag, J. Incidence and risk of cross-colonization in cystic fibrosis holiday camps. Antonie Van Leeuwenhoek 1980;46:100101.Google Scholar
78.Hoogkamp-Korstanje, JA, Meis, JF, Kissing, J, van der Laag, J, Melchers, WJ. Risk of cross-colonization and infection by Pseudomonas aeruginosa in a holiday camp for cystic fibrosis patients. J Clin Microbiol 1995;33:572575.CrossRefGoogle Scholar
79.Hunfeld, KP, Schmidt, C, Krackhardt, B, et al.Risk of Pseudomonas aeruginosa cross-colonisation in patients with cystic fibrosis within a holiday camp: a molecular-epidemiological study. Wien Klin Wochenschr 2000;112:329333.Google Scholar
80.Jones, AM, Govan, JR, Doherty, CJ, et al.Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 2001;358:557558.Google Scholar
81.Ojeniyi, B, Frederiksen, B, Hoiby, N. Pseudomonas aeruginosa cross-infection among patients with cystic fibrosis during a winter camp. Pediatr Pulmonol 2000;29:177181.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
82.Revets, H, Vandamme, P, Van Zeebroeck, A, et al.Burkholderia (Pseudomonas) cepacia and cystic fibrosis: the epidemiology in Belgium. Acta Clin Belg 1996;51:222230.Google Scholar
83.Scott, FW, Pitt, TL. Identification and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 2004;53:609615.Google Scholar
84.Shreve, MR, Johnson, SJ, Milla, CE, Wielinski, CL, Regelmann, WE. PCR ribotyping and endonuclease subtyping in the epidemiology of Burkholderia cepacia infection. Am J Respir Crit Care Med 1997;155:984989.Google Scholar
85.Smith, DL, Gumery, LB, Smith, EG, Stableforth, DE, Kaufmann, ME, Pitt, TL. Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission. J Clin Microbiol 1993;31:30173022.CrossRefGoogle Scholar
86.Speert, DP, Campbell, ME, Henry, DA, et al.Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med 2002;166:988993.Google Scholar
87.Sun, L, Jiang, RZ, Steinbach, S, et al.The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med 1995;1:661666.Google Scholar
88.Tablan, OC, Chorba, TL, Schidlow, DV, et al.Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 1985;107:382387.Google Scholar
89.Thomassen, MJ, Demko, CA, Doershuk, CF, Stern, RC, Klinger, ID. Pseudomonas cepacia: decrease in colonization in patients with cystic fibrosis. Am Rev Respir Dis 1986;134:669671.Google Scholar
90.Valcin, M, Moissenet, D, Sardet, A, Tournier, G, Garbarg-Chenon, A, Vu-Thien, H. Pseudomonas (Burkholderia) cepacia in children with cystic fibrosis: epidemiological investigation by analysis or restriction fragment length polymorphism. Pathol Biol (Paris) 1996;44:442446.Google Scholar
91.Walsh, NM, Casano, AA, Manangan, LP, Sinkowitz-Cochran, RL, Jarvis, WR. Risk factors for Burkholderia cepacia complex colonization and infection among patients with cystic fibrosis. J Pediatr 2002;141:512517.Google Scholar
92.Wolz, C, Kiosz, G, Ogle, JW, et al.Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis: use of a DNA probe. Epidemiol Infect 1989;102:205214.Google Scholar