Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:47:27.892Z Has data issue: false hasContentIssue false

The human microbiota and infection prevention

Published online by Cambridge University Press:  19 February 2019

R. Araos
Affiliation:
Instituto de Ciencias e Innovación en Medicina, and Millennium Nucleus for Collaborative Reseach on Bacterial Resistance (MICROB-R), Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago, Chile
Erika M.C. D’Agata*
Affiliation:
Division of Infectious Diseases, Rhode Island Hospital, Brown University, Providence, Rhode Island, United States
*
Author for correspondence: Erika M.C. D’Agata, Email: edagata@lifespan.org

Abstract

The human microbiome participates in numerous aspects of human physiology and disease states. Recently, studies have begun to explore the role of the microbiome in colonization, infection and transmission of pathogens. This review provides a summary of the methodological principles used in microbiome studies and the published evidence of the impact of microbiome dysbiosis in infection prevention.

Type
Review
Copyright
© 2019 by The Society for Healthcare Epidemiology of America. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ley, RE, Peterson, DA, Gordon, JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006;124:837848.CrossRefGoogle ScholarPubMed
The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207214.CrossRefGoogle Scholar
Lloyd-Price, J, Abu-Ali, G, Huttenhower, C. The healthy human microbiome. Genome Med 2016;8:5162.CrossRefGoogle ScholarPubMed
Eckburg, PB, Bik, EM, Bernstein, CN. Diversity of the human intestinal microbial flora. Science 2005;308:16351638.CrossRefGoogle ScholarPubMed
Marchesi, JR, Adams, DH, Fava, F, et al. The gut microbiota and host health: a new clinical frontier. Gut 2016;65:330339.CrossRefGoogle ScholarPubMed
Lynch, SV, Pederson, O. The human intestinal microbiome in health and disease. New Engl J Med 2016;75:23692379.CrossRefGoogle Scholar
Brestoff, JR, Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 2013;14:676684.CrossRefGoogle ScholarPubMed
Gilbert, JA, Quinn, RA, Debelius, J, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016;535:94103.CrossRefGoogle ScholarPubMed
Parte, AC. LPSN—List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:18251829.CrossRefGoogle Scholar
Cho, I, Blaser, MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260270.CrossRefGoogle ScholarPubMed
Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;22;457:480484.CrossRefGoogle ScholarPubMed
Morgan, XC, Huttenhower, C. Chapter 12: Human microbiome analysis. PLoS Comput Biol 2012;8:e1002808.CrossRefGoogle ScholarPubMed
Morgan, X, Huttenhower, C, Meta’omic analytic techniques for studying the intestinal micriobiome. Gastroenterology 2014;146:14371448.CrossRefGoogle Scholar
Kuczynski, J, Lauber, CL, Walters, WA, et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 2011;13:4758.CrossRefGoogle ScholarPubMed
Quince, C, Walker, AW, Simpson, JT, Loman, NJ, Segata, N. Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 2017;35:833844.CrossRefGoogle Scholar
Morgan, G, Langille, I, Zaneveld, J, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013;31:814821.Google Scholar
Kaminski, J, Gibson, MK, Franzosa, EA, et al. High-specificity targeted functional profiling in microbial communities with ShortBRED. PLOS Comp Biol 2015;11:e1004557.CrossRefGoogle ScholarPubMed
Weiss, S, Xu, Z, Peddada, S, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017;5:27.CrossRefGoogle ScholarPubMed
Yatsunenko, T, Rey, FE, Manary, MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222227.CrossRefGoogle ScholarPubMed
Tosh, PK, McDonald, LC. Infection control in the multidrug-resistant era: tending the human microbiome. Clin Infect Dis 2012;54:707713.CrossRefGoogle ScholarPubMed
Kim, S, Covington, A, Pamer, EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev 2017;279:90105.CrossRefGoogle ScholarPubMed
Dethlefsen, L, Huse, S, Sogin, ML, Relman, DA. The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Genet 2008;11:e1000255.Google Scholar
Jakobsson, HE, Jernberg, C, Anderson, AF, et al. Short-term antibiotic treatments has differing long-term impacts on the human throat and gut microbioms. PloS One 2010;e9836.CrossRefGoogle Scholar
Caballero, S, Kim, S, Carter, RA, et al. Cooperating commensals restore colonization resistance to vancomycin-resistant Enterococcus faecium. Cell Host Microbe 2017;21:592602.CrossRefGoogle ScholarPubMed
Buffie, CG, Bucci, V, Stein, RR, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205208.CrossRefGoogle ScholarPubMed
Seekatz, AM, Young, V. Clostridium difficile and the microbiota. J Clin Invest 2014;124:41824189.CrossRefGoogle ScholarPubMed
Araos, R, Andreatos, N, Ugalde, J, et al. The fecal microbiome among nursing home residents with advanced dementia and Clostridium difficile. Dig Dis Sci 2018;63:15251531.CrossRefGoogle ScholarPubMed
McDonald, LC, Gerding, DN, Johnson, S, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clostridium difficile 2018;66:e1e48.Google Scholar
Araos, R, Tai, AK, Snyder, GM, Blaser, MJ, D’Agata, EMC. The protective role of Lactobacillus spp against colonization with multidrug-resistant organisms. Clin Infect Dis 2016:63:937943.CrossRefGoogle Scholar
Taur, Y, Xavier, JB, Lipuma, L, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 2012;55:905914.CrossRefGoogle ScholarPubMed
Shimasaki, T, Seekatz, A, Bassis, C, et al. Increased relative abundance of Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae within the gut microbiota is associated with risk of bloodstream infection in long-term acute care hospital patients. Clin Infect Dis 2018. doi: 10.1093/cid/ciy796.CrossRefGoogle ScholarPubMed
Van Schaik, W. The human gut resistome. Phil Trans R Soc B 2015;370:20140087.CrossRefGoogle ScholarPubMed
Millan, B, Park, H, Hotte, N, et al. Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis 2016;62:14791486.CrossRefGoogle ScholarPubMed
Araos, R, Montgomery, V, Ugalde, JA, Snyder, GM, D’Agata EMC. Microbial disruption indices to detect colonization with multidrug-resistant organisms. Infect Control Hosp Epidemiol 2017;38:13121318.CrossRefGoogle ScholarPubMed
Le Bastard, Q, Al-Ghalith, GA, Grégoire, M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther 2018;47:332345.CrossRefGoogle ScholarPubMed
D’Agata, EMC, Varu, A, Geffert, SF, et al. Acquisition of multidrug-resistant organisms in the absence of antimicrobial exposure. Clin Infect Dis 2018;67:14371440.CrossRefGoogle Scholar
Donskey, CJ, Chowdhry, TK, Hecker, MT, et al. Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 2000;343:19251932.CrossRefGoogle ScholarPubMed
Halpin, AL, de Man, TJB, Kraft, CS, et al. Intestinal microbiome disruption in patients in a long-term acute care hospital: a case for development of microbiome disruption indices to improve infection prevention. Am J Infect Control 2016;44:830836.CrossRefGoogle Scholar
Dubberke, ER, Lee, CH, Orenstein, R, et al. Results from a randomized, placebo-controlled clinical trial of a RBX2660—a microbiota-based drug for the prevention of recurrent Clostridium difficile infection. Clin Inf Dis 2018;67:11981204.CrossRefGoogle ScholarPubMed