Hostname: page-component-54dcc4c588-scsgl Total loading time: 0 Render date: 2025-10-04T10:05:26.681Z Has data issue: false hasContentIssue false

Symmetric Hom–Leibniz algebras

Published online by Cambridge University Press:  29 September 2025

Samiha Hidri
Affiliation:
University of Gabes, Faculty of Sciences, Riadh Zerig, 6029, Gabes, Tunisia
Fahmi Mhamdi*
Affiliation:
University of Gafsa, Faculty of Sciences, Department of Mathematics, Zarroug, Gafsa, Tunisia
*
Corresponding author: Fahmi Mhamdi; Email: fahmi.mhamdi@gmail.com

Abstract

This paper focuses on quadratic Hom–Leibniz algebras, defined as (left or right) Hom–Leibniz algebras equipped with symmetric, non-degenerate, and invariant bilinear forms. In particular, we demonstrate that every quadratic regular Hom–Leibniz algebra is symmetric, meaning that it is simultaneously a left and a right Hom–Leibniz algebra. We provide characterizations of symmetric (resp. quadratic) Hom–Leibniz algebras. We also investigate the $\mathrm{T}^*$-extensions of Hom–Leibniz algebras, establishing their compatibility with solvability and nilpotency. We study the equivalence of such extensions and provide the necessary and sufficient conditions for a nilpotent quadratic Hom–Leibniz algebra to be isometric to a $\mathrm{T}^*$-extension. Furthermore, through the procedure of double extension, which is a central extension followed by a generalized semi-direct product, we get an inductive description of all quadratic regular Hom–Leibniz algebras, allowing us to reduce their study to that of quadratic regular Hom–Lie algebras. Finally, we construct several non-trivial examples of symmetric (resp. quadratic) Hom–Leibniz algebras.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abid, F.-E. and Boucetta, M., Complete description of invariant, associative pseudo-Euclidean metrics on left Leibniz algebras via quadratic Lie algebras, J. Algebra 638 (2024), 358395.10.1016/j.jalgebra.2023.10.003CrossRefGoogle Scholar
Abid, F.-E. and Boucetta, M., Symplectic Leibniz algebras as a non-commutative version of symplectic Lie algebras (2024).arXiv: 2407.14913.Google Scholar
Albeverio, S., Ayupov, S. A. and Omirov, B. A., On nilpotent and simple Leibniz algebras, Commun. Algebra 33(1) (2005), 159172.10.1081/AGB-200040932CrossRefGoogle Scholar
Albuquerque, H., Barreiro, E., Benayadi, S., Boucetta, M. and Sánchez, J. M., Poisson algebras and symmetric Leibniz bialgebra structures on oscillator Lie algebras, J. Geom. Phys. 160 (2021), 103939.10.1016/j.geomphys.2020.103939CrossRefGoogle Scholar
Ammar, F., Ayadi, I., Mabrouk, S. and Makhlouf, A., Quadratic color Hom–Lie algebras, in Associative and non-associative algebras and applications, MAMAA 2018, Springer proceedings in mathematics and statistics (SilesMolina, M., ElKaoutit, L., Louzari, M., BenYakoub, L. and Benslimane, M., Editors, vol. 311 (Springer, Cham, 2020), 287312.Google Scholar
Bajo, I., Benayadi, S. and Bordemann, M., Generalized double extension and descriptions of quadratic Lie superalgebras (2007). arXiv: 0712.0228.Google Scholar
Bajo, I., Benayadi, S. and Medina, A., Symplectic structures on quadratic Lie algebras, J. Algebra 316(1) (2007), 174188.10.1016/j.jalgebra.2007.06.001CrossRefGoogle Scholar
Baklouti, A. and Benayadi, S. , Pseudo-euclidean Jordan algebras, Commun. Algebra 43(5) (2015), 20942123.10.1080/00927872.2014.888562CrossRefGoogle Scholar
Barreiro, E. and Benayadi, S., A new approach to Leibniz bialgebras, Algebr, Algebr. Represent. Theory 19(1) (2016), 71101.10.1007/s10468-015-9563-6CrossRefGoogle Scholar
Baues, O. and Cortés, V., Symplectic lie groups I–III, symplectic reduction, Lagrangian extensions, and existence of lagrangian normal subgroups, Société mathématique de France, Astérique 379 (2016). Société mathématique de France.Google Scholar
Benamor, H. and Benayadi, S., Double extension of quadratic Lie superalgebras, commun. Algebra 27(1) (1999), 6788.10.1080/00927879908826421CrossRefGoogle Scholar
Benayadi, S., On representations of symmetric Leibniz algebras, Glasg. Math. J. 62(S1) (2020), S99S107.10.1017/S0017089519000193CrossRefGoogle Scholar
Benayadi, S. and Bouarroudj, S., Double extensions of Lie superalgebras in characteristic 2 with nondegenerate invariant supersymmetric bilinear form, J. Algebra 510 (2018), 141179.10.1016/j.jalgebra.2018.06.005CrossRefGoogle Scholar
Benayadi, S., Bouarroudj, S. and Ehret, Q., Left-symmetric superalgebras and Lagrangian extensions of Lie superalgebras in characteristic 2 (2025). arXiv: 2501.15432.Google Scholar
Benayadi, S., Bouarroudj, S. and Hajli, M., Double extensions of restricted Lie (super)algebras, Arnold Math. J. 6 (2020), 231269.10.1007/s40598-020-00149-5CrossRefGoogle Scholar
Benayadi, S. and Hidri, S., Quadratic Leibniz algebras, J. Lie Theory 24(3) (2014), 737759.Google Scholar
Benayadi, S. and Hidri, S., Leibniz algebras with invariant bilinear forms and related Lie algebras, Commun. Algebra 44(8) (2016), 35383556.10.1080/00927872.2015.1085550CrossRefGoogle Scholar
Benayadi, S., Kaygorodov, I. and Mhamdi, F., Symmetric Zinbiel superalgebras, Commun. Algebra 51(1) (2023), 224238.10.1080/00927872.2022.2096224CrossRefGoogle Scholar
Benayadi, S. and Makhlouf, A., Hom–Lie algebras with symmetric invariant nondegenerate bilinear forms, J. Geom. Phys. 76 (2014), 3860.10.1016/j.geomphys.2013.10.010CrossRefGoogle Scholar
Benayadi, S., Mhamdi, F. and Omri, S., Quadratic (resp. symmetric) Leibniz superalgebras, Commun. Algebra 49(4) (2021), 17251750.10.1080/00927872.2020.1850751CrossRefGoogle Scholar
Bi, Y., Chen, D. and Zhang, T., Cohomology and crossed module extensions of Hom–Leibniz-Rinehart algebras, Front. Math. ( 2024). 10.1007/s11464-022-0351-4.10.1007/s11464-022-0351-4CrossRefGoogle Scholar
Bloh, A., On a generalization of the concept of a Lie algebra, Dokl. Akad. Nauk SSSR 165(3) (1965), 471473.Google Scholar
Bloh, A., CartanEilenberg homology theory for a generalized class of lie algebras (in Russian) , Dokl. Akad. Nauk SSSR 175(2) (1967), 266268. Translated into English in Soviet Math. Dokl. 8 (1967), 824–826.Google Scholar
Bloh, A., A certain generalization of the concept of Lie algebra, Uch. Zap. Mosk. Gos. Ped. Inst. (in Russian) 375 (1971), 920.Google Scholar
Bordemann, M., Nondegenerate associative bilinear forms on nonassociative algebras, Acta Math. Univer. Com. LXVI(2) (1997), 151201.Google Scholar
Bouarroudj, S. and Ehret, Q., Double extensions of quasi-Frobenius lie superalgebras with degenerate center, Commun. Algebra 53(5) (2025), 17391754.10.1080/00927872.2024.2421408CrossRefGoogle Scholar
Bouarroudj, S., Ehret, Q. and Maeda, Y., Symplectic double extensions for restricted quasi-Frobenius Lie (super)algebras, SIGMA symmetry integrab. Geom. Methods Appl. 19(070) (2023), 29p.Google Scholar
Bouarroudj, S. and Maeda, Y., Double and Lagrangian extensions for quasi-Frobenius Lie superalgebras, J. Algebra Appl. 22(12) (2023), 46p.CrossRefGoogle Scholar
Chatbouri, R., Quadratic Hom–right symmetric algebras, J. Geom. Phys. 144 (2019), 251262.10.1016/j.geomphys.2019.06.012CrossRefGoogle Scholar
Chtioui, T., Mabrouk, S. and Makhlouf, A., Hom–Jordan-Malcev-Poisson algebras. Ukr. Math. J. 74(11) (2023), 17951808.10.1007/s11253-023-02171-0CrossRefGoogle Scholar
Cuvier, C., Algèbres de Leibnitz: définitions, propriétés, Ann. Sci. Éc. Norm. Supér. (4e série) 27(1) (1994), 145.Google Scholar
Dardié, J.-M. and Medina, A., Algèbres de Lie kählériennes et double extension, J. Algebra 185(3) (1996), 774795.10.1006/jabr.1996.0350CrossRefGoogle Scholar
Dardié, J.-M. and Medina, A., Double extension symplectique d’un groupe de Lie symplectique, Adv. Math. 117(2) (1996), 208227.10.1006/aima.1996.0009CrossRefGoogle Scholar
Fischer, M., Symplectic Lie algebras with degenerate center, J. Algebra 521 (2019), 257283.10.1016/j.jalgebra.2018.11.038CrossRefGoogle Scholar
García-Delgado, R., Salgado, G. and Sánchez-Valenzuela, O. A., On quadratic Hom–Lie algebras with twist maps in their centroids and their relationship with quadratic Lie algebras, J. Algebra 651 (2024), 221242.10.1016/j.jalgebra.2024.04.006CrossRefGoogle Scholar
Harrathi, F., Mabrouk, S., Ncib, O. and Silvestrov, S., Kupershmidt operators on Hom–Malcev algebras and their deformation, Int. J. Geom. Methods Mod. Phys. 20(3) (2023), 2350046.CrossRefGoogle Scholar
Hartwig, J. T., Larsson, D. and Silvestrov, S. D., Deformations of lie algebras using $\sigma$ -derivations , J. Algebra 295(2) (2006), 314361.10.1016/j.jalgebra.2005.07.036CrossRefGoogle Scholar
Hurle, B. and Makhlouf, A., $\alpha$ -Type ChevalleyEilenberg cohomology of Hom–Lie algebras and bialgebras , Glasg. Math. J. 62(S1) (2020), S108S127.10.1017/S0017089519000296CrossRefGoogle Scholar
Karimjanov, I., Umrzaqov, S. and Yusupov, B., Local and 2-local automorphisms of solvable Leibniz algebras with Abelian and model nilradicals, Quaest. Math. 47(5) (2024), 10391054.10.2989/16073606.2023.2278745CrossRefGoogle Scholar
Lin, J., Wang, Y. and Deng, S., $\mathrm{T}^*$ -extension of Lie triple systems , Linear Algebra Appl. 431(11) (2009), 20712083.10.1016/j.laa.2009.07.001CrossRefGoogle Scholar
Liu, L. and Zheng, H., Twisted $\mathcal{O}$ -operator families on Leibniz algebras and NS-Leibniz family algebras , J. Algebra Appl. ( 2024). 10.1142/S0219498826500209.10.1142/S0219498826500209CrossRefGoogle Scholar
Loday, J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39(3-4) (1993), 269293.Google Scholar
Makhlouf, A. and Panaite, F., Twisting operators, twisted tensor products and smash products for Hom–associative algebras, Glasg. Math. J. 58(3) (2016), 513538.10.1017/S0017089515000294CrossRefGoogle Scholar
Makhlouf, A. and Silvestrov, S. D., Hom–algebra structures, J. Gen. Lie Theory Appl. 2(2) (2008), 5164.10.4303/jglta/S070206CrossRefGoogle Scholar
Mao, D., Hao, Z. and Chen, L., Double extensions of multiplicative restricted Hom–Lie algebras (2023). arXiv: 2401.08592.Google Scholar
Mason, G. and Yamskulna, G., Leibniz algebras and Lie algebras, SIGMA Symmetry Integrability, SIGMA. Symmetry, Integrab. Geom.: Methods Appl. 9(063) (2013), 10p.Google Scholar
Medina, A. and Revoy, P., Algèbres de Lie et produit scalaire invariant, Ann. Sci. Éc. Norm. Supér 4) 18(3) (1985), 553561.10.24033/asens.1496CrossRefGoogle Scholar
Medina, A. and Revoy, P., Groupes de Lie à structure symplectique invariante, in Symplectic Geometry, Groupoids and Integrable Systems, Séminaire Sud-Rhodanien de Géométrie, Mathematical Sciences Research Institute Publications (Dazord, P. and Weinstein, A., Editors), vol. 20 (Springer-Verlag, Berlin, New York, 1991), 247266.Google Scholar
Mukherjee, G. and Saha, R., Equivariant one-parameter formal deformations of Hom–Leibniz algebras, Commun. Contemp. Math. 24(3) (2022), 2050082.10.1142/S0219199720500820CrossRefGoogle Scholar
Nan, J., Wang, C. and Zhang, Q., Hom–Malcev superalgebras, Front. Math. China 9(3) (2014), 567584.10.1007/s11464-014-0351-0CrossRefGoogle Scholar
Nourmohammadifar, L. and Peyghan, E., Complex product structures on Hom–Lie algebras, Glasg. Math. J. 61(1) (2019), 6984.CrossRefGoogle Scholar
Saadaoui, N., Second cohomology group and quadratic extensions of metric Hom–Jacobi-Jordan algebras, Acta Comment. Univ. Tartu. Math. 27(2) (2023), 269294.Google Scholar
Sheng, Y., Representations of Hom–Lie algebras, Algebr. Represent. Theory 15(6) (2012), 10811098.10.1007/s10468-011-9280-8CrossRefGoogle Scholar
Wang, D. and Ke, Y., Reynolds operators on Hom–Leibniz algebras, Filomat 37(7) (2023), 21172130.10.2298/FIL2307117WCrossRefGoogle Scholar
Yau, D., Hom–Novikov algebras, J. Phys.: A Math. Theor. 44(8) (2011), 085202.Google Scholar
Zhao, J., Chen, L. and Ma, L., Representations and ${\mathrm{T}}^*$ -extensions of Hom–Jordan-Lie algebras , Commun. Algebra 44(7) (2016), 27862812.10.1080/00927872.2015.1065843CrossRefGoogle Scholar