Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T23:52:05.033Z Has data issue: false hasContentIssue false

Sur une inégalité

Published online by Cambridge University Press:  18 May 2009

D. Ž. Djoković
Affiliation:
Faculté d'ÉlectrotechniqueBeograd Yugoslavia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Dans cet article nous considerons l'inégalité

où les xi désignent les nombres réels qui remplissent les conditions suivantes

Cette inégalité est proposée par H. S. Shapiro [1].

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1963

References

Références

1.Shapiro, H. S., Problem 4603, Amer. Math. Monthly 61 (1954), 571.CrossRefGoogle Scholar
2.Mordell, L. J., On the inequality and some others, Abh. Math. Sem. Univ. Hamburg 22 (1958), 229240.CrossRefGoogle Scholar
3.Zulauf, A., Note on a conjecture of L. J. Mordell, Abh. Math. Sem. Univ. Hamburg 22 (1958), 240241.Google Scholar
4.Rankin, R. A., An inequality, Math. Gaz. 42 (1958), 3940.CrossRefGoogle Scholar
5.Zulauf, A., On a conjecture of L. J. Mordell, II, Math. Gaz. 43 (1959), 182184.CrossRefGoogle Scholar
6.Rankin, R. A., A cyclic inequality, Proc. Edinburgh Math. Soc. 12 (1961), 139147.CrossRefGoogle Scholar