Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-28T01:44:29.125Z Has data issue: false hasContentIssue false

Stratifying systems and Jordan-Hölder extriangulated categories

Published online by Cambridge University Press:  27 August 2025

Thomas Brüstle
Affiliation:
Départment de mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada
Souheila Hassoun
Affiliation:
Départment de mathématiques, Université de Sherbrooke, Sherbrooke, Québec, Canada
Amit Shah*
Affiliation:
Department of Mathematics, Aarhus University, Aarhus, Denmark
Aran Tattar
Affiliation:
Mathematical Institut, University of Cologne, Köln, Germany
*
Corresponding author: Amit Shah; Email: a.shah1728@gmail.com

Abstract

Stratifying systems, which have been defined for module, triangulated and exact categories previously, were developed to produce examples of standardly stratified algebras. A stratifying system $\Phi$ is a finite set of objects satisfying some orthogonality conditions. One very interesting property is that the subcategory $\mathcal{F}(\Phi )$ of objects admitting a composition series-like filtration with factors in $\Phi$ has the Jordan-Hölder property on these filtrations. This article has two main aims. First, we introduce notions of subobjects, simple objects and composition series for an extriangulated category, in order to define a Jordan-Hölder extriangulated category. Moreover, we characterise Jordan-Hölder, length, weakly idempotent complete extriangulated categories in terms of the associated Grothendieck monoid and Grothendieck group. Second, we develop a theory of stratifying systems in extriangulated categories. We define projective stratifying systems and show that every stratifying system $\Phi$ in an extriangulated category is part of a minimal projective one $(\Phi ,Q)$. We prove that $\mathcal{F}(\Phi )$ is a length, Jordan-Hölder extriangulated category when $(\Phi ,Q)$ satisfies a left exactness condition. We give several examples and answer a recent question of Enomoto–Saito in the negative.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Dedicated to the late Brian Parshall in honour of his contributions to representation theory.

References

Adachi, T., Enomoto, H. and Tsukamoto, M., Intervals of $s$ -torsion pairs in extriangulated categories with negative first extensions, Math. Proc. Cambridge Philos. Soc. 174(3) (2023), 451469.10.1017/S0305004122000354CrossRefGoogle Scholar
Adachi, T. and Tsukamoto, M., Mixed standardization and Ringel duality, J. Algebra 641 (2024), 546586.10.1016/j.jalgebra.2023.11.032CrossRefGoogle Scholar
Ágoston, I., Happel, D., Lukács, E. and Unger, L., Standardly stratified algebras and tilting, J. Algebra 226(1) (2000), 144160.10.1006/jabr.1999.8154CrossRefGoogle Scholar
Auslander, M. and Reiten, I., Representation theory of artin algebras IV. Invariants given by almost split sequences, Comm. Algebra 5(5) (1977), 443518.10.1080/00927877708822180CrossRefGoogle Scholar
Bellamy, G. and Thiel, U., Highest weight theory for finite-dimensional graded algebras with triangular decomposition, Adv. Math. 330 (2018), 361419.10.1016/j.aim.2018.03.011CrossRefGoogle Scholar
Bennett-Tennenhaus, R., Haugland, J., Sandøy, M. H. and Shah, A., The category of extensions and a characterisation of $n$ - exangulated functors, Math. Z. 305(3) (2023), 44.10.1007/s00209-023-03341-3CrossRefGoogle Scholar
Bennett-Tennenhaus, R. and Shah, A., Transport of structure in higher homological algebra, J. Algebra 574 (2021), 514549.10.1016/j.jalgebra.2021.01.019CrossRefGoogle Scholar
Beĭlinson, A. A., Bernstein, J. and Deligne, P., Faisceaux pervers, in Analysis and Topology on Singular Spaces, I (Luminy, 1981), vol. 100, Astérisque (Soc. Math, France, Paris, 1982), 5171.Google Scholar
Berenstein, A. and Greenstein, J., Primitively generated Hall algebras, Pacific J. Math. 281(2) (2016), 287331.10.2140/pjm.2016.281.287CrossRefGoogle Scholar
Bezrukavnikov, R. and Etingof, P., Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14(3–4) (2009), 397425.10.1007/s00029-009-0507-zCrossRefGoogle Scholar
Bodzenta, A. and Bondal, A., Abelian envelopes of exact categories and highest weight categories, Math. Z. 308(1) (2024), 8.10.1007/s00209-024-03543-3CrossRefGoogle Scholar
Bridgeland, T., Stability conditions on triangulated categories, Ann. of Math. 166(2) (2007), 317345.10.4007/annals.2007.166.317CrossRefGoogle Scholar
Brüstle, T., Hassoun, S., Langford, D. and Roy, S., Reduction of exact structures, J. Pure Appl. Algebra 224(4) (2020), 106212.10.1016/j.jpaa.2019.106212CrossRefGoogle Scholar
Brüstle, T., Hassoun, S. and Tattar, A., Intersections, sums, and the Jordan-Hölder property for exact categories, J. Pure Appl. Algebra 225(11) (2021), 106724.10.1016/j.jpaa.2021.106724CrossRefGoogle Scholar
Brüstle, T. and Hille, L., Matrices over upper triangular bimodules and $\delta$ - filtered modules over quasi-hereditary algebras, Colloq. Math. 83 (2000), 295303.10.4064/cm-83-2-295-303CrossRefGoogle Scholar
Bühler, T., Exact categories, Expo. Math. 28(1) (2010), 169.10.1016/j.exmath.2009.04.004CrossRefGoogle Scholar
Chen, H., Harder–Narasimhan categories, J. Pure Appl. Algebra 214(2) (2010), 187200.10.1016/j.jpaa.2009.05.009CrossRefGoogle Scholar
Cline, E., Parshall, B. and Scott, L., Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 8599.Google Scholar
Cline, E., Parshall, B. and Scott, L., Stratifying endomorphism algebras, Mem. Amer. Math. Soc. 124(591) (1996), viii+119.Google Scholar
Conde, T., $\Delta$ -filtrations and projective resolutions for the Auslander-Dlab-Ringel algebra, Algebr. Represent. Theory 21(3) (2018), 605625.10.1007/s10468-017-9730-zCrossRefGoogle Scholar
Coulembier, K., Some homological properties of ind-completions and highest weight categories, J. Algebra 562 (2020), 341367.10.1016/j.jalgebra.2020.05.039CrossRefGoogle Scholar
Dlab, V. and Ringel, C. M., The module theoretical approach to quasi-hereditary algebras, in Representations of Algebras and Related Topics (Kyoto, 1990), vol. 168, London Math. Soc. Lecture Note Ser. (Cambridge Univ. Press, Cambridge, 1992), 200224.10.1017/CBO9780511661853.007CrossRefGoogle Scholar
Doty, S., Representation theory of reductive normal algebraic monoids, Trans. Amer. Math. Soc. 351(6) (1999), 25392551.10.1090/S0002-9947-99-02462-9CrossRefGoogle Scholar
Dyer, M. J., Exact subcategories of triangulated subcategories, Preprint (2005), https://www3.nd.edu/~dyer/papers/extri.pdf.Google Scholar
Enomoto, H., The Jordan-Hölder property and Grothendieck monoids of exact categories, Adv. Math. 396 (2022), 108167.10.1016/j.aim.2021.108167CrossRefGoogle Scholar
Enomoto, H. and Saito, S., Grothendieck monoids of extriangulated categories, Preprint (2022), https://arxiv.org/abs/2208.02928v2.Google Scholar
Erdmann, K. and Sáenz, C., On standardly stratified algebras, Comm. Algebra 31(7) (2003), 34293446.10.1081/AGB-120022232CrossRefGoogle Scholar
Grillet, P.-A., Semigroups, in An Introduction to the Structure Theory, vol. 193, Monographs and Textbooks in Pure and Applied Mathematics (Marcel Dekker, Inc., New York, 1995).Google Scholar
Guay, N., Projective modules in the category $\mathscr{O}$ for the Cherednik algebra, J. Pure Appl. Algebra 182(2-3) (2003), 209221.10.1016/S0022-4049(03)00014-8CrossRefGoogle Scholar
Haugland, J., The Grothendieck group of an $n$ - exangulated category, Appl. Categ. Struct. 29(3) (2021), 431446.10.1007/s10485-020-09622-wCrossRefGoogle Scholar
Harder, G. and Narasimhan, M. S., On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212(3) (1975), 215248.10.1007/BF01357141CrossRefGoogle Scholar
Henrard, R. and van Roosmalen, A.-C., Derived categories of (one-sided) exact categories and their localizations, Preprint (2019), https://arxiv.org/abs/1903.12647v3.Google Scholar
Herschend, M., Liu, Y. and Nakaoka, H., n-exangulated categories (I): Definitions and fundamental properties, J. Algebra 570 (2021), 531586.10.1016/j.jalgebra.2020.11.017CrossRefGoogle Scholar
Iyama, O. and Yoshino, Y., Mutation in triangulated categories and rigid Cohen–Macaulay modules, Invent. Math. 172(1) (2008), 117168.10.1007/s00222-007-0096-4CrossRefGoogle Scholar
Jørgensen, P., Abelian subcategories of triangulated categories induced by simple minded systems, Math. Z. 301(1) (2022), 565592.10.1007/s00209-021-02913-5CrossRefGoogle Scholar
Jørgensen, P. and Shah, A., The index with respect to a rigid subcategory of a triangulated category, Int. Math. Res. Not. IMRN 2024(4) (2024), 32783309.10.1093/imrn/rnad130CrossRefGoogle Scholar
Klapproth, C., $n$ -extension closed subcategories of $n$ -exangulated categories, Preprint (2021), https://arxiv.org/abs/2209.01128v3.Google Scholar
Klapproth, C., Msapato, D. and Shah, A., Idempotent completions of $n$ -exangulated categories, Appl. Categ. Struct. 32(1) (2024), 7.10.1007/s10485-023-09758-5CrossRefGoogle Scholar
Koenig, S., Külshammer, J. and Ovsienko, S., Quasi-hereditary algebras, exact Borel subalgebras, $A_{\infty }$ - categories and boxes, Adv. Math. 262 (2014), 546592.10.1016/j.aim.2014.05.016CrossRefGoogle Scholar
Krause, H., Krull–Schmidt categories and projective covers, Expo. Math. 33(4) (2015), 535549.10.1016/j.exmath.2015.10.001CrossRefGoogle Scholar
Krause, H. and Saorín, M., On minimal approximations of modules, in Trends in the Representation Theory of Finite Dimensional Algebras (Seattle, WA, 1997), vol. 229, Contemp. Math. (Amer. Math. Soc, Providence, RI, 1998), 227236.10.1090/conm/229/03321CrossRefGoogle Scholar
Lanzilotta, M., Marcos, E., Mendoza, O. and Sáenz, C., On the relative socle for stratifying systems, Comm. Algebra 38(5) (2010), 16771694.10.1080/00927870902973896CrossRefGoogle Scholar
Liu, Y. and Nakaoka, H., Hearts of twin cotorsion pairs on extriangulated categories, J. Algebra 528 (2019), 96149.10.1016/j.jalgebra.2019.03.005CrossRefGoogle Scholar
Mendoza, O. and Santiago, V., Homological systems in triangulated categories, Appl. Categ. Struct. 24(1) (2016), 135.10.1007/s10485-014-9384-5CrossRefGoogle Scholar
Nakaoka, H. and Palu, Y., Extriangulated categories, Hovey twin cotorsion pairs and model structures, Cah. Topol. Géom. Différ. Catég. 60(2) (2019), 117193.Google Scholar
Padrol, A., Palu, Y., Pilaud, V. and Plamondon, P.-G., Associahedra for finite type cluster algebras and minimal relations between $\mathbf{g}$ -vectors, Proc. Lond. Math. Soc. 127(3) (2023), 513588.10.1112/plms.12543CrossRefGoogle Scholar
Reineke, M., The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152(2) (2003), 349368.10.1007/s00222-002-0273-4CrossRefGoogle Scholar
Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z. 208(2) (1991), 209223.10.1007/BF02571521CrossRefGoogle Scholar
Rouquier, R., Dimensions of triangulated categories, J. K-Theory 1(2) (2008), 193256.10.1017/is008004024jkt010CrossRefGoogle Scholar
Santiago, V., Stratifying systems for exact categories, Glasg. Math. J. 61(3) (2019), 501521.10.1017/S0017089518000320CrossRefGoogle Scholar
Scott, L. L.. Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, in The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), vol. 47, Proc. Sympos. Pure Math. (Amer. Math. Soc, Providence, RI, 1987), 271281.10.1090/pspum/047.2/933417CrossRefGoogle Scholar
Shah, A., Auslander-Reiten theory in quasi-abelian and Krull-Schmidt categories, J. Pure Appl. Algebra 224(1) (2020), 98124.10.1016/j.jpaa.2019.04.017CrossRefGoogle Scholar
Shah, A., Krull-Remak-Schmidt decompositions in Hom-finite additive categories, Expo. Math. 41(1) (2023), 220237.10.1016/j.exmath.2022.12.003CrossRefGoogle Scholar
Skowroński, A. and Yamagata, K., Frobenius algebras. II, in EMS Textbooks in Mathematics (European Mathematical Society (EMS), Zürich, 2017).Google Scholar
Tattar, A., Torsion pairs and quasi-abelian categories, Algebr. Represent. Theory 24(6) (2021), 15571581.10.1007/s10468-020-10004-yCrossRefGoogle Scholar
Tattar, A., Torsion structures, subobjects and unique filtrations in non-abelian categories, PhD Thesis (Universität zu Köln, 2021).Google Scholar
Treffinger, H., An algebraic approach to Harder-Narasimhan filtrations, J. Pure Appl. Algebra 229(1) (2025), 107817.10.1016/j.jpaa.2024.107817CrossRefGoogle Scholar
Wang, L., Wei, J. and Zhang, H., Semibricks in extriangulated categories, Comm. Algebra 49(12) (2021), 52475262.10.1080/00927872.2021.1940192CrossRefGoogle Scholar
Wang, L., Wei, J., Zhang, H. and Zhang, P., Semibricks and the Jordan–Hölder property, J. Algebra Appl. (In press) (2025). DOI: 10.1142/S0219498825503347.10.1142/S0219498825503347CrossRefGoogle Scholar
Xi, C., Standardly stratified algebras and cellular algebras, Math. Proc. Cambridge Philos. Soc. 133(1) (2002), 3753.10.1017/S0305004102005996CrossRefGoogle Scholar
Zhou, P., Filtered objects in extriangulated categories, Comm. Algebra 48(11) (2020), 45804595.10.1080/00927872.2020.1766479CrossRefGoogle Scholar
Zhu, B. and Zhuang, X., Grothendieck groups in extriangulated categories, J. Algebra 574 (2021), 206232.10.1016/j.jalgebra.2021.01.029CrossRefGoogle Scholar