Published online by Cambridge University Press: 18 May 2009
In the present note, Σr denotes the class of all right pure semisimple rings (= right pure global dimension zero). It is known that if R ∈ Σr, then R is right artinian and every indecomposable right R-module is finitely generated. The class Σr is not closed under ultraproducts [4]. While Σr is closed under elementary descent (i.e. if S ∈ Σr and R is an elementary subring of S then R ∈ σr) [4], it is an open question whether right pure-semisimplicity is preserved under the passage to ultrapowers [4, Prob. 11.16]. In this note, this question is answered in the affirmative.