Published online by Cambridge University Press: 25 August 2010
In our previous work, we established the theory of multi-variable Witten zeta-functions, which are called the zeta-functions of root systems. We have already considered the cases of types A2, A3, B2, B3 and C3. In this paper, we consider the case of G2-type. We define certain analogues of Bernoulli polynomials of G2-type and study the generating functions of them to determine the coefficients of Witten's volume formulas of G2-type. Next, we consider the meromorphic continuation of the zeta-function of G2-type and determine its possible singularities. Finally, by using our previous method, we give explicit functional relations for them which include Witten's volume formulas.
 2, J. Algebra Appl.  9 (2010), 327–337.CrossRefGoogle Scholar
2, J. Algebra Appl.  9 (2010), 327–337.CrossRefGoogle Scholar