Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T02:10:20.428Z Has data issue: false hasContentIssue false

ON THE CONNECTEDNESS OF THE BRANCH LOCUS OF THE MODULI SPACE OF RIEMANN SURFACES OF GENUS 4

Published online by Cambridge University Press:  29 March 2010

ANTONIO F. COSTA
Affiliation:
Departamento de Matemáticas Fundamentales, Facultad de Ciencias, Universidad Nacional de Educacin a Distancia, 28040 Madrid, Spain e-mail: acosta@mat.uned.es
MILAGROS IZQUIERDO
Affiliation:
Matematiska Institutionen, Linköpings U 58183 Linköping, Sweden e-mail: miizq@mai.liu.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space of surfaces of genus 4, we prove its connectedness. As a consequence, one can deform a surface of genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface through a path consisting entirely of symmetric surfaces.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2010

References

REFERENCES

1.Bartolini, G., Costa, A. F., Izquierdo, M. and Porto, A. M., On the connectedness of the branch locus of the moduli space of Riemann surfaces, Rev. R. Acad. Cien. Serie A. Mat. 104 (2010), 8590.Google Scholar
2.Bartolini, G. and, Izquierdo, M., On the connectedness of the branch locus of the moduli space of Riemann surfaces of low genus, Preprint 2009.Google Scholar
3.Bogopolski, O. V., Classification of actions of finite groups on orientable surface of genus four, Siberian Adv. Math. 7 (1997), 938.Google Scholar
4.Breuer, T., Characters and automorphism groups of compact Riemann surfaces, in London Mathematical Society Lecture Note Series, vol. 280 (Cambridge University Press, Cambridge, UK, 2000).Google Scholar
5.Broughton, A., The equisymmetric stratification of the moduli space and the Krull dimension of mapping class groups, Topology Appl. 37 (1990), 101113.Google Scholar
6.Broughton, A., Classifying finite group actions on surfaces of low genus, J. Pure Appl. Algebra 69 (1990), 233270.CrossRefGoogle Scholar
7.Costa, A. F. and Izquierdo, M., Equisymmetric strata of the singular locus of the moduli space of Riemann surfaces of genus 4, in London Mathematical Society Lecture Note Series, vol. 368 (Gardiner, F. P., Gonzalez-Diez, G. and Kourouniotis, C., Editors) (Cambridge University Press, Cambridge, UK, 2010), 130148.Google Scholar
8.Costa, A. F., Izquierdo, M. and Ying, D., On Riemann surfaces with non-unique cyclic trigonal morphisms, Manuscripta Math. 118 (2005), 443453.CrossRefGoogle Scholar
9.Harvey, W., On branch loci in Teichmüller space, Trans. Amer. Math. Soc. 153 (1971), 387399.Google Scholar
10.Izquierdo, M. and Ying, D., Equisymmetric strata of the moduli space of cyclic trigonal Riemann surfaces of genus 4, Glasgow Math. J. 51 (2009).CrossRefGoogle Scholar
11.Kimura, H., Classification of automorphisms groups, up to topological equivalencce, of compact Riemann surfaces of genus 4, J. Algebra 264 (2003), 2654.CrossRefGoogle Scholar
12.Kulkarni, R. S., Isolated points in the branch locus of the moduli space of compact Riemann surfaces, Ann. Acad. Sci. Fen. Ser. A I Math. 16 (1991), 7181.Google Scholar
13.Nag, S., The Complex Theory of Teichmüller Spaces (Wiley Interscience, New York, USA, 1988).Google Scholar
14.Singerman, D., Subgroups of Fuchsian groups and finite permutation groups, Bull. Lond. Math. Soc. 2 (1970), 319323Google Scholar
15.Singerman, D., Finitely maximal Fuchsian groups, J. Lond. Math. Soc. 6 (1972), 2938.CrossRefGoogle Scholar
16.Smith, P. A., Abelian actions on 2-manifolds, Michigan Math. J. 14 (1967), 257275.CrossRefGoogle Scholar
17.Wolfart, J., Triangle groups and Jacobians of CM type, 2002, available at: http://www.math.uni-frankfurt.de/wolfartGoogle Scholar