Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T03:54:33.776Z Has data issue: false hasContentIssue false

ON HOMOLOGICAL FROBENIUS COMPLEXES AND BIMODULES

Published online by Cambridge University Press:  22 August 2014

J. R. GARCÍA ROZAS
Affiliation:
Departamento de Matemáticas, Universidad de Almería, 04071 Almería, Spain e-mails: jrgrozas@ual.es, oyonarte@ual.es, btorreci@ual.es
LUIS OYONARTE
Affiliation:
Departamento de Matemáticas, Universidad de Almería, 04071 Almería, Spain e-mails: jrgrozas@ual.es, oyonarte@ual.es, btorreci@ual.es
BLAS TORRECILLAS
Affiliation:
Departamento de Matemáticas, Universidad de Almería, 04071 Almería, Spain e-mails: jrgrozas@ual.es, oyonarte@ual.es, btorreci@ual.es
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce the concept of homological Frobenius functors as the natural generalization of Frobenius functors in the setting of triangulated categories, and study their structure in the particular case of the derived categories of those of complexes and modules over a unital associative ring. Tilting complexes (modules) are examples of homological Frobenius complexes (modules). Homological Frobenius functors retain some of the nice properties of Frobenius ones as the ascent theorem for Gorenstein categories. It is shown that homological Frobenius ring homomorphisms are always Frobenius.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2014 

References

REFERENCES

1.Abe, H. and Hoshino, M., Frobenius extensions and tilting complexes, Alg. Rep. Theory 11 (2008), 215232.Google Scholar
2.Caenepeel, S., Militaru, G. and Zhu, S., Frobenius and seperable functors for generalized module categories and nonlinear equations, Lecture Notes in Mathematics, vol. 1787 (Springer, Berlin, Germany, 2002).Google Scholar
3.Castaño Iglesias, F., Torrecillas, J. Gómez and Nastasescu, C., Frobenius functors: Applications, Comm. Algebra 27 (10) (1999), 48794900.Google Scholar
4.Chen, X.-W., Totally reflexive extensions and modules, J. Algebra 379 (1) (2013) 322332.Google Scholar
5.Chen, H. and Xi, C., Homological ring epimorphisms and recollements from exact pairs, I. arXiv:1203.5168 (preprint).Google Scholar
6.Enochs, E., Estrada, S. and García Rozas, J. R., Gorenstein categories and Tate cohomology on projective schemes, Math. Nachr. 281 (4) (2008), 525540.Google Scholar
7.Enochs, E., Herzog, I. and Park, S., Cyclic quiver rings and polycyclic-by-finite group rings, Houston J. Math. 25 (1) (1999), 113.Google Scholar
8.Enochs, E. and Jenda, O., Relative homological algebra, vol. 2, De Gruyter Expositions in Mathematics, vol. 54 (De Gruyter, Berlin, Germany, 2011).Google Scholar
9.Hoshino, M. and Kato, Y., Tilting complexes defined by idempotents, Comm. Algebra 30 (1) (2002), 83100.Google Scholar
10.Kadison, L., New examples of Frobenius extensions, University Lecture Series, 14 (American Mathematical Society, Providence, RI, 1999).Google Scholar
11.Kadison, L., Separability and the twisted Frobenius bimodule, Alg. Rep. Theory 2 (1999), 397414.Google Scholar
12.Krause, H., Smashing subcategories and the telescope conjecture – an algebraic approach, Invent. Math. 139 (1) (2000), 99133.Google Scholar
13.Minamoto, H. and Mori, I., The structure of AS-Gorenstein algebras, Adv. Math. 226 (5) (2011), 40614095.Google Scholar
14.Miyachi, J., Derived categories with applications to representation of algebras. Personal notes. Available at http://www.u-gakugei.ac.jp/~miyachi/papers/ChibaSemi.pdf, accessed 2 May 2012.Google Scholar
15.Morita, K., Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A, 9 (1965), 4071.Google Scholar
16.Neeman, A., The Grothendieck duality theorem via Bousfields techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), 205236.Google Scholar
17.Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001).CrossRefGoogle Scholar
18.Serpé, C., Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra, 177 (2003), 103112.Google Scholar
19.Spaltenstein, N., Resolutions of unbounded complexes, Compositio Math. 65 (1988), 121154.Google Scholar