Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T05:20:20.377Z Has data issue: false hasContentIssue false

MONOLITHIC MODULES OVER NOETHERIAN RINGS

Published online by Cambridge University Press:  01 August 2011

PAULA A. A. B. CARVALHO
Affiliation:
Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal e-mail: pbcarval@fc.up.pt
IAN M. MUSSON
Affiliation:
University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201USA e-mail: musson@csd.uwm.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study finiteness conditions on essential extensions of simple modules over the quantum plane, the quantised Weyl algebra and Noetherian down-up algebras. The results achieved improve the ones obtained by Carvalho et al. (Carvalho et al., Injective modules over down-up algebras, Glasgow Math. J. 52A (2010), 53–59) for down-up algebras.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2011

References

REFERENCES

1.Benkart, G. and Roby, T., Down-up algebras, J. Algebra 209 (1998), 305344. Addendum, J. Algebra 213 (1999), 378.CrossRefGoogle Scholar
2.Bavula, V. and Van Oystaeyen, F., Krull dimension of generalized Weyl algebras and iterated skew polynomial rings: Commutative coefficients, J. Algebra 208 (1998), 134.CrossRefGoogle Scholar
3.Brown, K. A., The structure of modules over polycyclic groups, Math. Proc. Camb. Philos. Soc. 89 (2) (1981), 257283.CrossRefGoogle Scholar
4.Carvalho, P. A. A. B. and Musson, I. M., Down-up algebras and their representation theory, J. Algebra 228 (2000), 286310.CrossRefGoogle Scholar
5.Carvalho, P. A. A. B., Lomp, C. and Pusat-Yilmaz, D., Injective modules over down-up algebras, Glasgow Math. J. 52A (2010), 5359.CrossRefGoogle Scholar
6.Chatters, A. W. and Hajarnavis, C. R., Rings with chain conditions, Research Notes in Mathematics Series, Vol. 44 (Pitman Advanced Publishing Program, San Francisco, CA, 1980).Google Scholar
7.Dahlberg, R. P., Injective hulls of simple sl(2, ℂ) modules are locally Artinian, Proc. Amer. Math. Soc. 107 (1) (1989), 3537.Google Scholar
8.Donkin, S., On the Noetherian property in endomorphism rings of certain comodules, J. Algebra 70 (2) (1981), 394419.CrossRefGoogle Scholar
9.Hall, P., On the finiteness of certain soluble groups, Proc. London Math. Soc. 3 (9) (1959), 595622.CrossRefGoogle Scholar
10.Hildebrand, J., Centers of down-up algebras over fields of prime characteristic, Comm. Algebra 30 (2002), 171191.CrossRefGoogle Scholar
11.Jategaonkar, A. V., Jacobson's conjecture and modules over fully bounded Noetherian rings, J. Algebra 30 (1974), 103121.CrossRefGoogle Scholar
12.Jategaonkar, A. V., Integral group rings of polycyclic-by-finite groups, J. Pure Appl. Algebra 4 (1974), 337343.CrossRefGoogle Scholar
13.Kirkman, E., Musson, I. M. and Passman, D. S., Noetherian down-up algebras, Proc. Amer. Math. Soc. 127 (11) (1999), 31613167.CrossRefGoogle Scholar
14.Kulkarni, R. S., Down-up algebras at roots of unity, Proc. Amer. Math. Soc. 136 (10) (2008), 33753382.CrossRefGoogle Scholar
15.Musson, I. M., Injective modules for group rings of polycyclic groups, I, Quart. J. Math. Oxford Ser. 2 (31) (1980), 429448.CrossRefGoogle Scholar
16.Musson, I. M., Injective modules for group rings of polycyclic groups, II, Quart. J. Math. Oxford Ser. 2 (31) (1980), 449466.CrossRefGoogle Scholar
17.Musson, I. M., Some examples of modules over Noetherian rings, Glasgow Math. J. 23 (1982), 913.CrossRefGoogle Scholar
18.Passman, D. S., The algebraic structure of group rings (reprint of the 1977 original) (Robert E. Krieger Publishing, Melbourne, FL, 1985).Google Scholar
19.Praton, I., Primitive ideals of Noetherian down-up algebras, Comm. Algebra 32 (2004), 443471.CrossRefGoogle Scholar
20.Roseblade, J. E., Applications of the Artin-Rees lemma to group rings, Sympos. Math. 17 (1976), 471478 (Convegno sui Gruppi Infiniti, INDAM, Rome, 1973, Academic Press, London).Google Scholar
21.Sharpe, D. W. and Vamos, P., Injective modules, (Cambridge Tracts in Mathematics and Mathematical Physics, Vol. 62) (Cambridge University Press, Cambridge, UK, 1972).Google Scholar
22.Zhao, K., Centers of down-up algebras, J. Algebra 214 (1999), 103121.CrossRefGoogle Scholar