Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T21:54:58.576Z Has data issue: false hasContentIssue false

GROUPS OF INFINITE RANK IN WHICH NORMALITY IS A TRANSITIVE RELATION

Published online by Cambridge University Press:  30 August 2013

M. DE FALCO
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II Complesso Universitario Monte S. Angelo, Via Cintia, I – 80126 Napoli, Italy e-mail: degiovan@unina.it, mdefalco@unina.it, cmusella@unina.it
F. DE GIOVANNI
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II Complesso Universitario Monte S. Angelo, Via Cintia, I – 80126 Napoli, Italy e-mail: degiovan@unina.it, mdefalco@unina.it, cmusella@unina.it
C. MUSELLA
Affiliation:
Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II Complesso Universitario Monte S. Angelo, Via Cintia, I – 80126 Napoli, Italy e-mail: degiovan@unina.it, mdefalco@unina.it, cmusella@unina.it
Y. P. SYSAK
Affiliation:
Institute of Mathematics, Ukrainian National Academy of Sciences vul. Tereshchenkivska 3, 01601 Kiev, Ukraine e-mail: sysak@imath.kiev.ua
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A group is called a T-group if all its subnormal subgroups are normal. It is proved here that if G is a periodic (generalized) soluble group in which all subnormal subgroups of infinite rank are normal, then either G is a T-group or it has finite rank. It follows that if G is an arbitrary group whose Fitting subgroup has infinite rank, then G has the property T if and only if all its subnormal subgroups of infinite rank are normal.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.De Falco, M., de Giovanni, F., Musella, C. and Sysak, Y. P., On metahamiltonian groups of infinite rank, J. Algebra (to appear).Google Scholar
2.De Falco, M., de Giovanni, F., Musella, C. and Trabelsi, N., Groups whose proper subgroups of infinite rank have finite conjugacy classes, Bull. Austral. Math. Soc. (to appear).Google Scholar
3.De Mari, F. and de Giovanni, F., Groups satisfying the maximal condition on subnormal non-normal subgroups, Colloquium Math. 103 (2005), 8598.CrossRefGoogle Scholar
4.De Mari, F. and de Giovanni, F., Groups satisfying the minimal condition on subnormal non-normal subgroups, Algebra Colloq. 13 (2006), 411420.Google Scholar
5.Dixon, M. R., Evans, M. J. and Smith, H., Locally soluble-by-finite groups of finite rank, J. Algebra 182 (1996), 756769.Google Scholar
6.Dixon, M. R., Evans, M. J. and Smith, H., Locally (soluble-by-finite) groups with all proper non-nilpotent subgroups of finite rank, J. Pure Appl. Algebra 135 (1999), 3343.Google Scholar
7.Dixon, M. R., Evans, M. J. and Smith, H., Groups with all proper subgroups (finite rank)-by-nilpotent, Arch. Math. (Basel) 72 (1999), 321327.Google Scholar
8.Dixon, M. R. and Karatas, Z. Y., Groups with all subgroups permutable or of finite rank, Centr. Eur. J. Math. 10 (2012), 950957.Google Scholar
9.Evans, M. J. and Kim, Y., On groups in which every subgroup of infinite rank is subnormal of bounded defect, Comm. Algebra 32 (2004), 25472557.Google Scholar
10.Franciosi, S. and de Giovanni, F., Groups in which every infinite subnormal subgroup is normal, J. Algebra 96 (1985), 566580.Google Scholar
11.Gaschütz, W., Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 8792.Google Scholar
12.Robinson, D. J. S., Groups in which normality is a transitive relation, Proc. Camb. Philos. Soc. 68 (1964), 2138.Google Scholar
13.Robinson, D. J. S., Finiteness conditions and generalized soluble groups (Springer, Berlin, Germany, 1972).Google Scholar
14.Semko, N. N. and Kuchmenko, S. N.: Groups with almost normal subgroups of infinite rank, Ukrain. Math. J. 57 (2005), 621639.CrossRefGoogle Scholar