Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T08:41:37.271Z Has data issue: false hasContentIssue false

GEOGRAPHY AND BOTANY OF IRREDUCIBLE NON-SPIN SYMPLECTIC 4-MANIFOLDS WITH ABELIAN FUNDAMENTAL GROUP

Published online by Cambridge University Press:  13 August 2013

RAFAEL TORRES*
Affiliation:
Department of Mathematics, California Institute of Technology, 1200 E California Blvd, Pasadena 91125, CA, USA e-mail: rtorresr@caltech.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The geography and botany problems of irreducible non-spin symplectic 4-manifolds with a choice of fundamental group from $\{{\mathbb{Z}}_p, {\mathbb{Z}}_p\oplus {\mathbb{Z}}_q, {\mathbb{Z}}, {\mathbb{Z}}\oplus {\mathbb{Z}}_p, {\mathbb{Z}}\oplus {\mathbb{Z}}\}$ are studied by building upon the recent progress obtained on the simply connected realm. Results on the botany of simply connected 4-manifolds not available in the literature are extended.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013 

References

REFERENCES

1.Akhmedov, A., Small exotic 4-manifolds, Alg. Geom. Topol. 8 (2008), 17811794.Google Scholar
2.Akhmedov, A., Baldridge, S., Baykur, R. I., Kirk, P. and Park, B. D., Simply connected minimal symplectic 4-manifolds with signature less than -1, J. Eur. Math. Soc. 1 (2010), 133161.Google Scholar
3.Akhmedov, A., Baykur, R. I. and Park, B. D., Constructing infinitely many smooth structures on small 4-manifolds, J. Topol. 2 (2008), 113.Google Scholar
4.Akhmedov, A. and Park, B. D., Exotic smooth structures on small 4-manifolds, Invent. Math. 173 (2008), 209223.Google Scholar
5.Akhmedov, A. and Park, B. D., New symplectic 4-manifolds with non-negative signature, J. Gokova Geom. Topol. 2 (2008), 113.Google Scholar
6.Akhmedov, A. and Park, B. D., Exotic smooth structures on small 4-manifolds with odd signatures, Invent. Math. 181 (2010), 577603.Google Scholar
7.Akhmedov, A. and Park, B. D., Geography of simply connected spin symplectic 4-manifolds, Math. Res. Lett. 17 (2010), 483492.Google Scholar
8.Auroux, D., Donaldson, S. K. and Katzarkov, L., Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185203.CrossRefGoogle Scholar
9.Baldridge, S. and Kirk, P., Symplectic 4-manifolds with arbitrary fundamental group near the Bogomolov-Miyaoka-Yau line, J. Symplectic Geom. 4 (2006), 6370.Google Scholar
10.Baldridge, S. and Kirk, P., On symplectic 4-manifolds with prescribed fundamental group, Comment. Math. Helv. 82 (2007), 845875.Google Scholar
11.Baldridge, S. and Kirk, P., A symplectic manifold homeomorphic but not diffeomorphic to $\mathbb{CP}^2 \# 3 \overline{\mathbb{CP}}^2$, Geom. Topol. 12 (2) (2008), 919940.Google Scholar
12.Baldridge, S. and Kirk, P., Luttinger surgery and interesting symplectic 4-manifolds with small Euler characteristic, arXiv:math/0701400 [math.GT].Google Scholar
13.Baldridge, S. and Kirk, P., Constructions of small symplectic 4-manifolds using Luttinger surgery, J. Diff. Geom. 82 (2) (2009), 317362.Google Scholar
14.Fintushel, R. A., Knot surgery revisited, in Floer Homology, Gauge Theory and Low Dimensional Topology, Clay Mathematics Institute Proceddings 4, CMI/AMS Book Series (Clay Mathematics Institute, Oxford, UK, 2006), 195224.Google Scholar
15.Fintushel, R., Construction of 4-manifolds, Talk given at the Conference of Perspectives in Analysis, Geometry, and Topology, Stockholm University, Stockholm, Sweden (2008).Google Scholar
16.Fintushel, R. A., Park, B. D. and Stern, R. J.Reverse engineering small 4-manifolds, Alg. Geom. Topol. 7 (2007), 21032116.Google Scholar
17.Fintushel, R. A. and Stern, R. J., A fake 4-manifold with $\pi_1 = \mathbb{Z}$, Turkish J. Math. 18 (1994), 16.Google Scholar
18.Fintushel, R. A. and Stern, R. J., Knots, links and 4-manifolds, Invent. Math. 134 (1998), 363400.CrossRefGoogle Scholar
19.Fintushel, R. A. and Stern, R. J., Six lectures on four 4-manifolds, Graduate Summer School on Low Dimensional Topology (Park City Mathematics Institute, Princeton, NJ, 2006).Google Scholar
20.Fintushel, R. A. and Stern, R. J., Surgery on nullhomologous tori and simply connected 4-manifolds with b + = 1, J. Topol. 1 (2008), 115.Google Scholar
21.Fintushel, R. A. and Stern, R. J., Pinwheels and nullhomologous surgery on 4-manifolds with b + = 1, Alg. Geom. Topol. 11 (2011), 16491699.CrossRefGoogle Scholar
22.Fintushel, R. A., Stern, R. J. and Sunukjian, N., Exotic group actions on simply-connected 4-manifolds, J. Topol. 2 (2009), 769822.Google Scholar
23.Freedman, M., The topology of four-dimensional manifolds, J. Diff. Geom. 17 (1982), 357453.Google Scholar
24.Freedman, M. and Quinn, F., Topology of 4-manifolds (Princeton University Press, Princeton, NJ, 1990).Google Scholar
25.Gompf, R. E., A new construction of symplectic manifolds. Ann. Math. 142 (1995), 527595.Google Scholar
26.Gompf, R. E. and Stipsicz, A. I., 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20 (American Mathematical Society, Providence, RI, 1999).CrossRefGoogle Scholar
27.Hambleton, I. and Kreck, M., Smooth structures on algebraic surfaces with cyclic fundamental group, Invent. Math. 91 (1988), 5359.Google Scholar
28.Hambleton, I. and Kreck, M., Smooth structures on algebraic surfaces with finite fundamental group, Invent. Math. 102 (1990), 109114.Google Scholar
29.Hambleton, I. and Kreck, M., Cancellation, elliptic surfaces and the topology of certain four-manifolds, J. Reine Angew. Math. 444 (1993), 79100.Google Scholar
30.Hambleton, I. and Teichner, P., A non-extended Hermitian form over $\mathbb{Z} [\mathbb{Z}]$, Manuscripta Math. 94 (1997), 435442.CrossRefGoogle Scholar
31.Hamilton, M. J. D. and Kotschick, D., Minimality and irreducibility of symplectic four-manifolds, Int. Math. Res. Not. 13, art. ID 35032 (2006). doi:10.1155/IMRN/2006/35032.Google Scholar
32.Kotschick, D., The Seiberg-Witten invariants of symplectic 4-manifolds after C.H. Taubes}, Seminaire Bourbaki 48éme année 812 (1995–96), 195220 (Astérique 241 (1997)).Google Scholar
33.Krushkal, V. and Lee, R., Surgery on closed 4-manifolds with free fundamental group, Math. Proc. Camb. Phil. Soc. 133 (2) (2002), 305310.CrossRefGoogle Scholar
34.Lübke, M. and Okonek, C., Differentiable structures on elliptic surfaces with cyclic fundamental group, Comp. Math. 63 (1987), 217222.Google Scholar
35.Luttinger, K. M., Lagrangian tori in $\mathbb{R}^4$, J. Diff. Geom. 42 (1995), 220228.Google Scholar
36.Maier, F., On the diffeomorphism type of elliptic surfaces with finite fundamental group, PhD Thesis, Tulane University, New Orleans, LA (1987).Google Scholar
37.McCarthy, J. and Wolfson, J., Symplectic normal connect sum, Topology 33 (1994), 729764.Google Scholar
38.McDuff, D. and Salamon, D., Introduction to symplectic topology, 2nd ed. Oxford Mathematical Monographs. (Clarendon Press, Oxford University Press, New York, 1998).Google Scholar
39.Morgan, J., Mrowka, T. and Szabó, Z., Product formulas along T 3 for Seiberg-Witten invariants, Math. Res. Lett. 2 (1997) 915929.Google Scholar
40.Okonek, C., Fake Enrique surfaces, Topology 27 (1988), 415427.Google Scholar
41.Ozbagci, B. and Stipsicz, A., Noncomplex smooth 4-manifolds with genus-2 Lefschetz fibrations, Proc. Amer. Math. Soc. 128 (10) (2000), 31253128.Google Scholar
42.Ozbagci, B. and Stipsicz, A., Surgery con contact 3-manifolds and Stein surfaces, Bolyai Society Mathematical Studies, vol 13 (Springer, New York, 2006).Google Scholar
43.Park, J., The geography of irreducible 4-manifolds, Proc. Amer. Math. Soc. 126 (1998), 24932503.Google Scholar
44.Park, B. D., Exotic smooth structures on $3\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ Proc. Amer. Math. Soc. 128 (10) (2000), 30573065, and Erratum Proc. Amer. Math. Soc. 136(4), (2008), 1503.Google Scholar
45.Park, B. D., Exotic smooth structures on $3\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$ part II, Proc. Amer. Math. Soc. 128 (10) (2000), 30673073.Google Scholar
46.Park, B. D., A gluing formula for the Seiberg-Witten invariant along $T^3$, Michigan Math. J. 50 (2002), 593611.Google Scholar
47.Park, B. D., Constructing infinitely many smooth structures on $3\mathbb{CP}^2 \# n \overline{\mathbb{CP}^2}$, Math. Ann. 322 (2) (2002), 267278; and Erratum Math. Ann. 340 (2008), 731–732.CrossRefGoogle Scholar
48.Park, J., The geography of spin symplectic 4-manifolds, Math. Z. 240 (2002), 405421.Google Scholar
49.Park, J., Exotic smooth structures on 4-manifolds, Forum Math. 14 (2002), 915929.Google Scholar
50.Park, J., Exotic smooth structures on 4-manifolds II, Top. Appl. 132 (2003), 195202.Google Scholar
51.Park, J., The geography of symplectic 4-manifolds with an arbitrary fundamental group, Proc. Amer. Math. Soc. 135 (7) (2007) 23012307.Google Scholar
52.Park, B. D. and Szabó, Z.. The geography problem for irreducible spin four-manifolds, Trans. Amer. Math. Soc. 352 (2000), 36393650.CrossRefGoogle Scholar
53.Park, J. and Yun, K. H., Exotic smooth structures on $(2n + 2l - 1)\mathbb{CP}^2 \# (2n + 4l - 1) \overline{\mathbb{CP}}^2$, Bull. Korean Math. Soc. 47 (2010), 961971.Google Scholar
54.Rokhlin, V., New results in the theory of four dimensional manifolds, Dokl. Akad. Nauk. USSR 84 (1951), 355357.Google Scholar
55.Smith, I., Symplectic geometry of Lefschetz fibrations, Dissertation (Oxford Press University, Oxford, UK, 1998).Google Scholar
56.Stern, R. J., Topology of 4-manifolds: a conference in honor of Ronald Fintushel's 60th birthday, talk given at Tulane University (2006).Google Scholar
57.Stipsicz, A. I., A note on the geography of symplectic manifolds, Turkish J. Math. 20 (1996), 135139.Google Scholar
58.Stipsicz, A. I., Simply-connected symplectic 4-manifolds with positive signature, proceedings of the 6th Gokova geometry-topology conference, Turkish J. Math. 23 (1999), 145150.Google Scholar
59.Stipsicz, A. I., The geography problem of 4-manifolds with various structures, Acta Math. Hungar. 87 (2000), 267278.Google Scholar
60.Stipsicz, A. I. and Szabó, S., An exotic smooth structure on $\mathbb{CP}^2 \# 6\overline{\mathbb{CP}}^2$, Geom. Topol. 9 (2005), 813832.Google Scholar
61.Stipsicz, A. I. and Szabó, S., Small exotic 4-manifolds with b +2 = 3, Bull. Lond. Math. Soc. 38 (2006), 501506.Google Scholar
62.Stong, R. and Wang, Z., Self-homeomorphisms of 4-manifolds with fundamental group $\mathbb{Z}$, Top. Appl. 106 (2000), 4956.Google Scholar
63.Szabó, Z., Irreducible four-manifolds with small Euler characteristics, Topology 35, (1996), 411426.CrossRefGoogle Scholar
64.Szabó, Z., Simply-connected irreducible 4-manifolds with no symplectic structures, Invent. Math. 132, (1998), 457466.Google Scholar
65.Taubes, C., The Seiberg-Witten invariants and symplectic forms, Math. Res. Let. 1 (6) (1994), 809822.Google Scholar
66.Taubes, C., Seiberg-Witten and Gromov invariants, in Geometry and Physics (Aarhus, 1995), 591601, Lecture Notes in Pure and Applied Mathematics, 184, (Marcel Dekker New York, 1997).Google Scholar
67.Taubes, C., Counting pseudo-holomorphic submanifolds in dimension 4, J. Diff. Geom. 44 (1996), 818893.Google Scholar
68.Thurston, W., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467468.Google Scholar
69.Torres, R., Irreducible 4-manifolds with abelian non-cyclic fundamental group of small rank, Top. Appl. 57 (2010), 831838.Google Scholar
70.Torres, R., Geography of spin symplectic four-manifolds with abelian fundamental group, J. Aust. Math. Soc. 91 (2011), 207218.CrossRefGoogle Scholar
71.Usher, M., Minimality and symplectic sums, Int. Math. Res. Not. (2006), Art. ID 49857, 17. doi:10.1155/IMRN/2006/49857.CrossRefGoogle Scholar
72.Wang, S., Smooth structures on complex surfaces with fundamental group $\mathbb{Z}$2, Proc. Amer. Math. Soc. 125 (1) (1997), 287292.Google Scholar
73.Witten, E., Monopoles and four-manifolds, Math. Res. Lett. 1 (6) (1994), 769796.Google Scholar
74.Yazinski, J. T., A new bound on the size of symplectic 4-manifolds with prescribed fundamental group, J. Symplectic Geom. 11 (2013), 2536.CrossRefGoogle Scholar