Published online by Cambridge University Press: 18 May 2009
Brian Hartley asked me whether a free (nilpotent of class 2 and exponent p2)-group of countable rank has a faithful linear representation of finite degree, p here being a prime of course. The answer is yes. The point is that this then yields via work of F. Leinen and M. J. Tomkinson, see [3,3.6] an image of a linear p-group, which is not even finitary linear. The question of which relatively free groups have faithful linear representations dates back at least to work of W. Magnus in the 1930's, see [4, pp. 33, 34 and the final comment on p. 40] for a discussion of this. Our construction, which works more generally, is a further contribution. We write ℜc for the variety of nilpotent groups of class at most c and (ℭ9 for the variety of groups of exponent dividing q.