Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T14:15:11.927Z Has data issue: false hasContentIssue false

EQUIVARIANT COMPRESSION OF CERTAIN DIRECT LIMIT GROUPS AND AMALGAMATED FREE PRODUCTS

Published online by Cambridge University Press:  10 June 2016

CHRIS CAVE
Affiliation:
School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom, e-mails: chriscave89@gmail.com, Dennis.Dreesen@soton.ac.uk
DENNIS DREESEN
Affiliation:
School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom, e-mails: chriscave89@gmail.com, Dennis.Dreesen@soton.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a means of estimating the equivariant compression of a group G in terms of properties of open subgroups G i G whose direct limit is G. Quantifying a result by Gal, we also study the behaviour of the equivariant compression under amalgamated free products G 1∗H G 2 where H is of finite index in both G 1 and G 2.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2016 

References

REFERENCES

1. Antolin, Y. and Dreesen, D., The Haagerup property is stable under graph products, preprint, 2013.Google Scholar
2. Arzhantseva, G. N., Guba, V. S. and Sapir, M. V., Metrics on diagram groups and uniform embeddings in a Hilbert space, Comment. Math. Helv. 81 (4) (2006), 911929.Google Scholar
3. Arzhantseva, G., Druţu, C. and Sapir, M., Compression functions of uniform embeddings of groups into Hilbert and Banach spaces, J. Reine Angew. Math. 633 (2009), 213235.Google Scholar
4. Austin, T., Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J. 159 (2) (2011), 187222.Google Scholar
5. Austin, T., Naor, A. and Peres, Y., The wreath product of $\mathbb{Z}$ with $\mathbb{Z}$ has Hilbert compression exponent $\frac{2}{3}$ , Proc. Amer. Math. Soc. 137 (1) (2009), 8590.CrossRefGoogle Scholar
6. Bekka, B., de la Harpe, P. and Valette, A., Kazhdan's property (T), New Mathematical Monographs, vol. 11 (Cambridge University Press, Cambridge, 2008).Google Scholar
7. Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A., Groups with the Haagerup property, Progress in Mathematics, vol. 197 (Birkhäuser Verlag, Basel, 2001), Gromov's a-T-menability.Google Scholar
8. Cornulier, Y., Stalder, Y. and Valette, A., Proper actions of wreath products and generalizations, Trans. Amer. Math. Soc. 364 (6) (2012), 31593184.CrossRefGoogle Scholar
9. de Cornulier, Y., R. Tessera and A. Valette, Isometric group actions on Hilbert spaces: Growth of cocycles, Geom. Funct. Anal. 17 (3) (2007), 770792.CrossRefGoogle Scholar
10. de la Harpe, P. and Valette, A., La propriété (T) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger), Number 175. 1989, With an appendix by M. Burger.Google Scholar
11. Dreesen, D., Hilbert space compression for free products and HNN-extensions, J. Funct. Anal. 261 (12) (2011), 35853611.Google Scholar
12. Gal, Ś. R., a-T-menability of groups acting on trees, Bull. Austral. Math. Soc. 69 (2) (2004), 297303.Google Scholar
13. Guentner, E. and Kaminker, J., Exactness and the Novikov conjecture, Topology 41 (2) (2002), 411418.Google Scholar
14. Guentner, E. and Kaminker, J., Exactness and uniform embeddability of discrete groups, J. London Math. Soc. 70 (3) (2004), 703718.Google Scholar
15. Hewitt, E. and Ross, K. A., Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152 (Springer-Verlag, New York, 1970).Google Scholar
16. Lafforgue, V., Un renforcement de la propriété (T), Duke Math. J. 143 (3) (2008), 559602.Google Scholar
17. Li, S., Compression bounds for wreath products, Proc. Amer. Math. Soc. 138 (8) (2010), 27012714.Google Scholar
18. Naor, A. and Peres, Y., Embeddings of discrete groups and the speed of random walks, Int. Math. Res. Not. (2008). doi: 10.1093/imrn/rnn076.Google Scholar
19. Stalder, Y. and Valette, A., Wreath products with the integers, proper actions and Hilbert space compression, Geom. Dedicata 124 (2007), 199211.CrossRefGoogle Scholar
20. Tessera, R., Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces, Comment. Math. Helv. 86 (3) (2011), 499535.Google Scholar