Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T12:49:09.400Z Has data issue: false hasContentIssue false

THE EMBEDDINGS OF THE HEISENBERG GROUP INTO THE CREMONA GROUP

Published online by Cambridge University Press:  09 March 2021

JULIE DÉSERTI*
Affiliation:
Université Côte d’Azur, CNRS, Laboratoire J.A. Dieudonné, UMR 7351, Nice, France e-mail: deserti@math.cnrs.fr

Abstract

In this article, we describe the embeddings of the Heisenberg group into the Cremona group.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blanc, J. and Cantat, S., Dynamical degrees of birational transformations of projective surfaces, J. Amer. Math. Soc. 29(2) (2016), 415471.CrossRefGoogle Scholar
Blanc, J. and Déserti, J., Degree growth of birational maps of the plane, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(2) (2015), 507533.Google Scholar
Blanc, J. and Furter, J.-P., Topologies and structures of the Cremona groups, Ann. Math. (2) 178(3) (2013), 11731198.CrossRefGoogle Scholar
Blanc, J. and Furter, J.-P., Length in the Cremona group, Ann. H. Lebesgue 2 (2019), 187257.CrossRefGoogle Scholar
Cantat, S., Dynamique des automorphismes des surfaces K3, Acta Math. 187(1) (2001), 157.CrossRefGoogle Scholar
Cantat, S. and Cornulier, Y., Distortion in Cremona groups, Ann. Scuola Normale Sup. Pisa Cl. Sci. 20(2) (2020), 827858.Google Scholar
Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer, Int. Math. Res. Not. 27 (2006), Art. ID 71701.Google Scholar
Diller, J. and Favre, C., Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123(6) (2001), 11351169.CrossRefGoogle Scholar
Gizatullin, M. H., Rational G-surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 44(1) (1980), 110–144, 239.Google Scholar