Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T10:41:48.876Z Has data issue: false hasContentIssue false

CYCLIC BRANCHED COVERINGS OF BRIESKORN SPHERES BOUNDING ACYCLIC 4-MANIFOLDS

Published online by Cambridge University Press:  03 July 2020

NIMA ANVARI
Affiliation:
Department of Mathematics, McMaster UniversityL8S 4K1, Hamilton, ON, Canada, e-mails: anvarin@math.mcmaster.ca; hambleton@mcmaster.ca
IAN HAMBLETON
Affiliation:
Department of Mathematics, McMaster UniversityL8S 4K1, Hamilton, ON, Canada, e-mails: anvarin@math.mcmaster.ca; hambleton@mcmaster.ca

Abstract

We show that standard cyclic actions on Brieskorn homology 3-spheres with non-empty fixed set do not extend smoothly to any contractible smooth 4-manifold it may bound. The quotient of any such extension would be an acyclic 4-manifold with boundary a related Brieskorn homology sphere. We briefly discuss well-known invariants of homology spheres that obstruct acyclic bounding 4-manifolds and then use a method based on equivariant Yang–Mills moduli spaces to rule out extensions of the actions.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbulut, S. and Kirby, R., Mazur manifolds, Michigan Math. J. 26 (1979), 259284.10.1307/mmj/1029002261CrossRefGoogle Scholar
Akbulut, S. and Kirby, R., Branched covers of surfaces in 4-manifolds, Math. Ann. 252 (1979/80), 111131.CrossRefGoogle Scholar
Anvari, N. and Hambleton, I., Cyclic group actions on contractible 4–manifolds, Geom. Topol. 20 (2016), 11271155.CrossRefGoogle Scholar
Boileau, M., Leeb, B., and Porti, J., Geometrization of 3-dimensional orbifolds, Ann. Math. 162(2) (2005), 195290.CrossRefGoogle Scholar
Bredon, G. E., Introduction to compact transformation groups, Pure and Applied Mathematics, vol. 46 (Academic Press, New York, 1972).Google Scholar
Casson, A. J. and Harer, J. L., Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), 2336.CrossRefGoogle Scholar
Dinkelbach, J. and Leeb, B., Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds, Geom. Topol. 13 (2009), 11291173.CrossRefGoogle Scholar
Fickle, H. C., Knots, Z-homology 3-spheres and contractible 4-manifolds, Houston J. Math. 10 (1984), 467493.Google Scholar
Fintushel, R. and Stern, R. J., An exotic free involution on S4, Ann. Math. 113(2) (1981), 357365.CrossRefGoogle Scholar
Fintushel, R. and Stern, R. J., Pseudofree orbifolds, Ann. Math. 122(2) (1985), 335364.CrossRefGoogle Scholar
Fintushel, R. and Stern, R. J., O(2) actions on the 5-sphere, Invent. Math. 87 (1987), 457476.10.1007/BF01389237CrossRefGoogle Scholar
Fox, R. H. and Milnor, J. W., Singularities of 2-spheres in 4-space and cobordism of knots, Osaka Math. J. 3 (1966), 257267.Google Scholar
Gilmer, P. M., Kania-Bartoszynska, J., and Przytycki, J. H., 3–manifold invariants and periodicity of homology spheres, Algebraic Geom. Topol. 2 (2002), 825842.10.2140/agt.2002.2.825CrossRefGoogle Scholar
Gordon, C. M., Knots, homology spheres, and contractible 4-manifolds, Topology 14 (1975), 151172.Google Scholar
Hambleton, I. and Lee, R., Perturbation of equivariant moduli spaces, Math. Ann. 293 (1992), 1737.10.1007/BF01444700CrossRefGoogle Scholar
Hambleton, I. and Lee, R., Smooth group actions on definite 4-manifolds and moduli spaces, Duke Math. J. 78 (1995), 715732.CrossRefGoogle Scholar
Issa, A. and McCoy, D., On Seifert fibered spaces bounding definite manifolds,arXiv:1807.10310, 2018.Google Scholar
Issa, A. and McCoy, D., Smoothly embedding Seifert fibered spaces in S 4,arXiv:1810.04770, 2018.Google Scholar
Kwasik, S. and Lawson, T., Nonsmoothable Z p actions on contractible 4-manifolds, J. Reine Angew. Math. 437 (1993), 2954.Google Scholar
Lecuona, A. G., On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math. Soc. 364 (2012), 233285.10.1090/S0002-9947-2011-05385-7CrossRefGoogle Scholar
Lisca, P., Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429472.CrossRefGoogle Scholar
Litherland, R. A., Signatures of iterated torus knots, in Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Mathematics, vol. 722 (Springer, Berlin, 1979), 71–84.CrossRefGoogle Scholar
Luft, E. and Sjerve, D., On regular coverings of 3-manifolds by homology 3-spheres, Pacific J. Math. 152 (1992), 151163.CrossRefGoogle Scholar
Meeks, W. H., III and Scott, P., Finite group actions on 3-manifolds, Invent. Math. 86 (1986), 287346.Google Scholar
Neumann, W. D., An invariant of plumbed homology spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Mathematics, vol. 788 (Springer, Berlin, 1980), 125–144.Google Scholar
Neumann, W. D. and Zagier, D., A note on an invariant of Fintushel and Stern, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Mathematics, vol. 1167 (Springer, Berlin, 1985), 241–244.Google Scholar
Orlik, P., Seifert manifolds, Lecture Notes in Mathematics, vol. 291 (Springer-Verlag, Berlin, New York, 1972).Google Scholar
Rolfsen, D., Knots and links, Mathematics Lecture Series, vol. 7 (Publish or Perish, Inc., Berkeley, CA, 1976).Google Scholar
Saveliev, N., Floer homology of Brieskorn homology spheres, J. Differ. Geom. 53 (1999), 1587.Google Scholar
Saveliev, N., Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), 465490.CrossRefGoogle Scholar
Saveliev, N., Invariants for homology 3-spheres, Encyclopaedia of Mathematical Sciences, vol. 140 (Springer-Verlag, Berlin, 2002), Low-Dimensional Topology, I.Google Scholar
Siebenmann, L., On vanishing of the Rohlin invariant and nonfinitely amphicheiral homology 3-spheres, in Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788 (Springer, Berlin, 1980), 172–222.Google Scholar
Stern, R. J., Some more Brieskorn spheres which bound contractible manifolds, Notices Amer. Math Soc. 25 (1978), A–448.Google Scholar
Ue, M., The Neumann-Siebenmann invariant and Seifert surgery, Math. Z. 250 (2005), 475493.CrossRefGoogle Scholar