Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T18:05:31.548Z Has data issue: false hasContentIssue false

The Closest Packing of Spherical Caps in n Dimensions

Published online by Cambridge University Press:  18 May 2009

R. A. Rankin
Affiliation:
The University of Glasgow.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Sn denote the “surface” of an n-dimensional unit sphere in Euclidean space of n dimensions. We may suppose that the sphere is centred at the origin of coordinates O, so that the points P(x1, x2, …, xn) of Sn satisfy

We suppose that n≥2.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1955

References

REFERENCES

(1)Bachmann, P., Die Arithmetih der quadratischen Formen, Zweite Abteilung (Berlin, 1923), Chapter 10.Google Scholar
(2)Fejes, L. Tóth, Lagerungen in der Ebene auf der Kugel und im Raum (Berlin, 1953).Google Scholar
(3)Rankin, R. A., “On the closest packing of spheres in n dimensions”, Ann. of Math. 48 (1947), 1062–81.Google Scholar
(4)Schütte, K. und Waerden, B. L. van der, “Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand 1 Platz?” Math. Ann. 123 (1951), 96124.Google Scholar