Published online by Cambridge University Press: 22 July 2015
The purpose of this paper is to present a brief discussion of both the normed space of operator p-summable sequences in a Banach space and the normed space of sequentially p-limited operators. The focus is on proving that the vector space of all operator p-summable sequences in a Banach space is a Banach space itself and that the class of sequentially p-limited operators is a Banach operator ideal with respect to a suitable ideal norm- and to discuss some other properties and multiplication results of related classes of operators. These results are shown to fit into a general discussion of operator [Y,p]-summable sequences and relevant operator ideals.