Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T21:07:21.718Z Has data issue: false hasContentIssue false

Characterizations of commutativity for C*-algebras

Published online by Cambridge University Press:  18 May 2009

M. J. Crabb
Affiliation:
University of Glasgow
J. Duncan
Affiliation:
University of Stirling
C. M. McGregor
Affiliation:
University of Glasgow
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let be a C*-algebra acting on the Hilbert space H and let be the self-adjoint elements of . The following characterization of commutativity is due to I. Kaplansky (see Dixmier [3, p. 58]).

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 1974

References

REFERENCES

1.Bonsall, F. F. and Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Notes Series No. 2, 1971.CrossRefGoogle Scholar
2.Bouldin, R., The numerical range of a product, II, J. Math. Anal. Appl. 33 (1971), 212219.CrossRefGoogle Scholar
3.Dixmier, J., Les C*-algèbres et leurs représentations, 2me edition (Paris, 1969).Google Scholar
4.Fukamiya, M., Misonou, M. and Takeda, Z., On order and commutativity of B*-algebras, Tôhoku Math. J. (2) 6 (1954), 8993.CrossRefGoogle Scholar
5.Ogasawara, T., A theorem on operator algebras, J. Sci. Hiroshima Univ. Ser. A. 18 (1955), 307309.Google Scholar
6.Sherman, S., Order in operator algebras, Amer. J. Math. 73 (1951), 227232.Google Scholar
7.Taylor, D. C., The strict topology for double centralizer algebras, Trans. Amer. Math. Soc. 150 (1970), 633643.CrossRefGoogle Scholar