Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:07:49.430Z Has data issue: false hasContentIssue false

BOUNDARY VALUE PROBLEMS VIA AN INTERMEDIATE VALUE THEOREM

Published online by Cambridge University Press:  01 September 2008

GERD HERZOG
Affiliation:
Institut für Analysis, Universität Karlsruhe, D-76128 Karlsruhe, Germany e-mails: Gerd.Herzog@math.uni-karlsruhe.de; Roland.Lemmert@math.uni-karlsruhe.de
ROLAND LEMMERT
Affiliation:
Institut für Analysis, Universität Karlsruhe, D-76128 Karlsruhe, Germany e-mails: Gerd.Herzog@math.uni-karlsruhe.de; Roland.Lemmert@math.uni-karlsruhe.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use an intermediate value theorem for quasi-monotone increasing functions to prove the existence of the smallest and the greatest solution of the Dirichlet problem u″ + f(t, u) = 0, u(0) = α, u(1) = β between lower and upper solutions, where f:[0,1] × EE is quasi-monotone increasing in its second variable with respect to a regular cone.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2008

References

REFERENCES

1.Bernfeld, S. R. and Lakshmikantham, V., Linear monotone method for nonlinear boundary value problems in Banach spaces, Rocky Mt. J. Math. 12 (1982), 807815.Google Scholar
2.Caristi, G., Positive semi-definite solutions of boundary value problems for matrix differential equations, Boll. Un. Mat. Ital. A 1 (1982), 431438.Google Scholar
3.Granas, A., Guenther, R. and Lee, J., Nonlinear boundary value problems for ordinary differential equations, Dissert. Math. 244 (1985), 1128.Google Scholar
4.Herzog, G., The Dirichlet problem for quasimonotone systems of second order equations, Rocky Mt. J. Math. 34 (2004), 195204.CrossRefGoogle Scholar
5.Herzog, G. and Lemmert, R., Intermediate value theorems for quasimonotone increasing mappings, Numer. Funct. Anal. Optim. 20 (1999), 901908.CrossRefGoogle Scholar
6.Herzog, G. and Lemmert, R., Second order differential inequalities in Banach spaces, Ann. Polon. Math. 77 (2001), 6978.CrossRefGoogle Scholar
7.Herzog, G. and Lemmert, R., On BVPs in l (A), Extr. Math. 20 (2005), 1323.Google Scholar
8.Hu, S., Fixed points for discontinuous quasi-monotone maps in ℝn, Proc. Am. Math. Soc. 104 (1988), 11111114.Google Scholar
9.Lakshmikantham, V. and Vatsala, A. S., Quasi-solutions and monotone method for systems of nonlinear boundary value problems, J. Math. Anal. Appl. 79 (1981), 3847.CrossRefGoogle Scholar
10.Lettenmeyer, F., Über die von einem Punkt ausgehenden Integralkurven einer Differentialgleichung zweiter Ordnung, Deutsche Math. 7 (1942), 5674.Google Scholar
11.Rovderová, E., Existence of solution to nonlinear boundary value problem for ordinary differential equation of the second order in Hilbert space, Math. Bohem. 117 (1992), 415424.CrossRefGoogle Scholar
12.Schmidt, S., Fixed points for discontinuous quasimonotone maps in sequence spaces, Proc. Am. Math. Soc. 115 (1992), 361363.Google Scholar
13.Šeda, V., Antitone operators and ordinary differential equations, Czech. Math. J. 31 (1981), 531553.CrossRefGoogle Scholar
14.Stern, R. J. and Wolkowicz, H., Exponential nonnegativity on the ice cream cone, SIAM J. Matrix Anal. Appl. 12 (1991), 160165.CrossRefGoogle Scholar
15.Uhl, R., Smallest and greatest fixed points of quasimonotone increasing mappings, Math. Nachr. 248–249 (2003), 204210.CrossRefGoogle Scholar
16.Volkmann, P., Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157164.CrossRefGoogle Scholar