Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T09:55:44.495Z Has data issue: false hasContentIssue false

THE BEST SOBOLEV TRACE CONSTANT IN PERIODIC MEDIA FOR CRITICAL AND SUBCRITICAL EXPONENTS

Published online by Cambridge University Press:  01 September 2009

JULIÁN FERNÁNDEZ BONDER
Affiliation:
Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria (1428), Buenos Aires, Argentina e-mail: jfbonder@dm.uba.ar, web page: http://mate.dm.uba.ar/~jfbonder
RAFAEL ORIVE
Affiliation:
Departamento de Matemáticas, Universidad Autonoma de Madrid, Crta. Colmenar Viejo km. 15, 28049 Madrid, Spain e-mail: rafael.orive@uam.es, web page: http://www.uam.es/rafael.orive
JULIO D. ROSSI
Affiliation:
Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Pabellon I, Ciudad Universitaria (1428), Buenos Aires, Argentina e-mail: jrossi@dm.uba.ar, web page: http://mate.dm.uba.ar/~jrossi
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study homogenisation problems for Sobolev trace embedding H1(Ω) ↪ Lq(∂Ω) in a bounded smooth domain. When q = 2 this leads to a Steklov-like eigenvalue problem. We deal with the best constant of the Sobolev trace embedding in rapidly oscillating periodic media, and we consider H1 and Lq spaces with weights that are periodic in space. We find that extremals for these embeddings converge to a solution of a homogenised limit problem, and the best trace constant converges to a homogenised best trace constant. Our results are in fact more general; we can also consider general operators of the form aɛ(x, ∇u) with non-linear Neumann boundary conditions. In particular, we can deal with the embedding W1,p(Ω) ↪ Lq(∂Ω).

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2009

References

REFERENCES

1.Adimurthi, S. L. and Yadava, S. L., Positive solution for Neumann problem with critical non linearity on boundary, Comm. Partial Diff. Eq. 16 (11) (1991), 17331760.CrossRefGoogle Scholar
2.Allaire, G., Homogenization and two-scale convergence, SIAM J. Math. Anal. 23 (1992), 14821518.CrossRefGoogle Scholar
3.Aubin, T., Équations différentielles non linéaires et le problîme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269296.Google Scholar
4.Baffico, L., Conca, C. and Rajesh, M., Homogenization of a class of nonlinear eigenvalue problems, Proc. R. Soc. Edinb. 136A (2006), 722.Google Scholar
5.Bensoussan, A., Lions, J. L. and Papanicolaou, G., Asymptotic analysis for periodic structures (North-Holland, Amsterdam, 1978).Google Scholar
6.Cherrier, P., Problèmes de Neumann non linéaires sur les variétés Riemanniennes, J. Funct. Anal. 57 (1984), 154206.CrossRefGoogle Scholar
7.Chiado Piat, V., Maso, G. Dal and Defranceschi, A., G-convergence of monotone operators, Ann. Inst. H. Poincaré 7 (1990), 123160.CrossRefGoogle Scholar
8.Cioranescu, D. and Murat, F., A strange term coming from nowhere, in Topics in the mathematical modelling of composite materials (Cherkaev, A. and Kohn, R., Editors), Progress in Nonlinear Differential Equations and Their Applications, vol. 31 (Birkhäuser, Boston, 1997), 4593.CrossRefGoogle Scholar
9.Maso, G. Dal, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and Their Applications, vol. 8 (Birkhäuser, Boston, 1993).CrossRefGoogle Scholar
10.Druet, O. and Hebey, E., The AB program in geometric analysis: Sharp Sobolev inequalities and related problems, Mem. Am. Math. Soc. 160 (2002),761.Google Scholar
11.Escobar, J. F., Sharp constant in a Sobolev trace inequality, Indiana Math. J. 37 (3) (1988), 687698.CrossRefGoogle Scholar
12.Bonder, J. Fernández, Dozo, E. Lami and Rossi, J. D., Symmetry properties for the extremals of the Sobolev trace embedding, Ann. Inst. H. Poincaré, Anal. Non Linéaire 21 (6) (2004), 795805.CrossRefGoogle Scholar
13.Bonder, J. Fernández, Orive, R. and Rossi, J. D., The best Sobolev trace constant in domains with holes for critical or subcritical exponents, ANZIAM J. 49 (2007), 213230.Google Scholar
14.Bonder, J. Fernández and Rossi, J. D., Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains, Comm. Pure Appl. Anal. 1 (3) (2002), 359378.CrossRefGoogle Scholar
15.Bonder, J. Fernández and Rossi, J. D., On the existence of extremals for the Sobolev trace embedding theorem with critical exponent, Bull. Lond. Math. Soc. 37 (1) (2005), 119125.CrossRefGoogle Scholar
16.Li, Y. and Zhu, M., Sharp Sobolev trace inequalities on Riemannian manifolds with boundaries. Comm. Pure Appl. Math. 50 (1997), 449487.3.0.CO;2-9>CrossRefGoogle Scholar
17.Lions, J.-L., Some methods in the mathematical analysis of systems and their control (Kexue Chubanshe, Beijing, Gordon & Breach, New York, 1981).Google Scholar
18.Murat, F. and Tartar, L., H-convergence, in Topics in the Mathematical Modelling of Composite Materials (Cherkaev, A. and Kohn, R., Editors), Progress in Nonlinear Differential Equations and Their Applications, vol. 31 (Birkhäuser, Boston, 1997), 2143.CrossRefGoogle Scholar
19.Nguetseng, G., A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608623.CrossRefGoogle Scholar
20.Steklov, M. W., Sur les problèmes fondamentaux en physique mathématique, Ann. Sci. Ecole Norm. Sup. 19 (1902), 455490.CrossRefGoogle Scholar