No CrossRef data available.
Published online by Cambridge University Press: 29 September 2025
This paper focuses on quadratic Hom–Leibniz algebras, defined as (left or right) Hom–Leibniz algebras equipped with symmetric, non-degenerate, and invariant bilinear forms. In particular, we demonstrate that every quadratic regular Hom–Leibniz algebra is symmetric, meaning that it is simultaneously a left and a right Hom–Leibniz algebra. We provide characterizations of symmetric (resp. quadratic) Hom–Leibniz algebras. We also investigate the $\mathrm{T}^*$-extensions of Hom–Leibniz algebras, establishing their compatibility with solvability and nilpotency. We study the equivalence of such extensions and provide the necessary and sufficient conditions for a nilpotent quadratic Hom–Leibniz algebra to be isometric to a
$\mathrm{T}^*$-extension. Furthermore, through the procedure of double extension, which is a central extension followed by a generalized semi-direct product, we get an inductive description of all quadratic regular Hom–Leibniz algebras, allowing us to reduce their study to that of quadratic regular Hom–Lie algebras. Finally, we construct several non-trivial examples of symmetric (resp. quadratic) Hom–Leibniz algebras.