Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:31:02.223Z Has data issue: false hasContentIssue false

JORDAN BIMODULES OVER THE SUPERALGEBRA M1|1

Published online by Cambridge University Press:  14 June 2019

CONSUELO MARTÍNEZ
Affiliation:
Departamento de Matemáticas, Universidad de Oviedo, C/ Calvo Sotelo, s/n, 33007 Oviedo, Spain e-mail: cmartinez@uniovi.es
IVAN SHESTAKOV
Affiliation:
Instituto de Matemática e Estatística, Universidade de São Paulo R. do Matão, 1010 – Cidade Universitária, São Paulo 05508-090, Brazil e-mail: shestak@ime.usp.br

Abstract

Let F be a field of characteristic different of 2 and let M1|1(F)(+) denote the Jordan superalgebra of 2 × 2 matrices over the field F. The aim of this paper is to classify irreducible (unital and one-sided) Jordan bimodules over the Jordan superalgebra M1|1(F)(+).

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bahturin, Y., Goze, M. and Remm, E., Group gradings on lie algebras, with applications to geometry, I, in Developments and Retrospectives in Lie Theory: Algebraic Methods (Mason, G., Penkov, I. and Wolf, J. A., Editors) (Springer, Switzerland, 2014), 151.Google Scholar
Elduque, A. and Kochetov, M., Gradings on Simple Lie Algebras, Mathematical surveys and Monographs, vol. 189 (American Mathematical Society, Providence, RI, 2013).Google Scholar
Jacobson, N., Structure and Representation of Jordan Algebras, vol. XXXIX (American Mathematical Society Colloquium Publications, Providence, 1968).Google Scholar
Kac, V. G., Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras, Comm. Algebra 5(13) (1977), 13751400.CrossRefGoogle Scholar
Martínez, C., Shestakov, I. and Zelmanov, E., Jordan superalgebras defined by brackets, J. London Math. Soc. 64(2) (2001), 357368.CrossRefGoogle Scholar
Martínez, C., Shestakov, I. and Zelmanov, E., Jordan bimodules over the superalgebras P(n) and Q(n), Trans. Am. Math. Soc. 362(4) (2010), 20372051.CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Simple finite-dimensional Jordan superalgebras of prime characteristic, J. Algebra 236(2) (2001), 374444CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Specializations of Jordan superalgebras, Canad. Math. Bull. 45(4) (2002), 653671.CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Unital Jordan bimodules over the simple Jordan superalgebra D(t), Trans. Am. Math. Soc. 358(8) (2006), 36373649.CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Jordan superalgebras and their representations, Contemp. Math. 483 (2009), 179194.CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Representation theory of Jordan Superalgebras I, Trans. Am. Math. Soc. 362(2) (2010), 815846.CrossRefGoogle Scholar
Martínez, C. and Zelmanov, E., Irreducible representations of the exceptional Cheng-Kac superalgebra, Trans. Am. Math. Soc. 366(11) (2014), 58535876.CrossRefGoogle Scholar
Racine, M. and Zelmanov, E., Simple Jordan superalgebras with semisimple even part, J. Algebra 270(2) (2003), 374444.CrossRefGoogle Scholar
Shtern, A. S., Representations of finite-dimensional Jordan superalgebras of Poisson brackets, Comm. Algebra 23(5) (1995), 18151823.CrossRefGoogle Scholar
Solarte, O. F. and Shestakov, I., Irreducible specializations of the simple Jordan superalgebra of Grassmann Poisson bracket, J. Algebra 455 (2016), 291313.Google Scholar
Trushina, M., Modular representations of the Jordan superalgebras D(t), J. Algebra 320(4) (2008), 13271343.CrossRefGoogle Scholar