Fully temperate freshwater, brackish and marine sediments overlying Anglian till and
glacilacustrine sediments in the Nar Valley area of northwest Norfolk, UK, have been attributed to
the Middle Pleistocene Hoxnian temperate stage on palynological grounds, and basal peats associated
with this sequence have been recently correlated with oxygen isotope stage 9 on the basis of a series of
230Th/238U dates (mean 317±14 ka). At Tottenhill these sediments (Nar Valley Freshwater Beds, Nar
Valley Clay) underlie a deltaic complex attributed to the Wolstonian ice margin. The lithostratigraphical
relations between the major formations in the Nar Valley, and the pollen stratigraphy of the fully
temperate sequence, are very similar to the Pleistocene sequence in the Inner Silver Pit area of the
southern North Sea, and correlation has been proposed between the successions described from these
two localities. However, the Inner Silver Pit sequence has yielded aminostratigraphic data consistent
with isotopic stage 11.
Benthic foraminiferal assemblages and foraminiferal amino-acid determinations have been investigated
from the Nar Valley Clay in order to test further the palaeoenvironmental setting of the
sequence and to help resolve the age of the sequence and correlation with the Inner Silver Pit interglacial.
The foraminiferal assemblages support previous sedimentological and palaeontological
evidence for a transgressive tendency within this sequence. Multiple isoleucine epimerization determinations
on Ammonia beccarii and Aubignyna perlucida from five levels within the Nar Valley Clay give
mean aIle/Ile ratios of 0.135 and 0.111, respectively. The A. beccarii ratios are much lower than mean
aIle/Ile ratios on equivalent species from the interglacial sequence in the Inner Silver Pit (upper Sand
Hole Formation), which are close to 0.2, and the two datasets fail to overlap at the 1σ level. The new
aminostratigraphic ratios indicate correlation of the Nar Valley Clay with oxygen isotope stage 9, and
therefore support the pre-existing 230Th/238U data.
These results suggest that two temperate stages of Hoxnian palynological affinity are present in the
Quaternary record of East Anglia and the southern North Sea basin, a conclusion consistent with
independent new U-series data from other Hoxnian sites in East Anglia. An alternative model in
which the amino-acid ratios are explained as a function of different post-depositional thermal histories,
related to length of cover by ice and water, is discussed but considered unlikely. The conclusions
have important implications for the timing and number of glacial events in and around the southern
North Sea basin, and help to resolve discrepancies in relative sea-level histories and biogeography in
temperate sequences hitherto accommodated within a single stage.