Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T12:49:27.649Z Has data issue: false hasContentIssue false

Vestiges of lost tectonic units in conglomerate pebbles? A test in Permian sequences of the Southalpine Orobic Alps

Published online by Cambridge University Press:  27 July 2009

DAVIDE ZANONI*
Affiliation:
Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy Department of Geology, University of New Brunswick, 2 Bailey Drive, Fredericton, NB E3B 5A3, Canada
M. IOLE SPALLA
Affiliation:
Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy C.N.R.–I.D.P.A., Via Mangiagalli 34, 20133 Milano, Italy
GUIDO GOSSO
Affiliation:
Dipartimento di Scienze della Terra ‘A. Desio’, Università degli Studi di Milano, Via Mangiagalli 34, 20133 Milano, Italy C.N.R.–I.D.P.A., Via Mangiagalli 34, 20133 Milano, Italy
*
Author for correspondence: dzanoni@unb.ca

Abstract

Microstructural analysis and P–T estimates of metamorphic pebbles in Permian conglomerates of the Central Southern Alps, representing the erosion product of the collapsing Variscan chain, are the discriminating tools for determining the metamorphic sequences representing potential sources of the conglomerates. In the selected case, basement units are precisely outlined on the basis of quality P–T–d–t paths that allow reconstruction of their metamorphic evolutions (tectonometamorphic units); this facilitates individuation of the basement sources with much better confidence. The lower Permian volcaniclastic sequence of the Eastern Orobic Basin, which overlies the Variscan Val Vedello basement, comprises the Aga and Vedello conglomerates, which are the oldest deposits containing a considerable amount of up to metre-sized metamorphic pebbles. Microstructural and mineral chemical data on metamorphic pebbles of the Aga and Vedello conglomerates were used to infer quantitative pre-Permian P–T evolutions, which are compared with those of the tectonometamorphic units constituting the surrounding Southalpine metamorphic basement. Two types of P–T evolution are recorded in the metamorphic pebbles of Aga and Vedello conglomerates: Type 1 is characterized by an amphibolite-facies imprint, followed by greenschist retrogression; Type 2 is characterized by three successive greenschist-facies re-equilibrations. The Type 1 P–T evolution of metamorphic pebbles matches with that of the adjacent tectonometamorphic unit of the Val Vedello basement. Type 2 is similar to those recorded in units B and C of the North East Orobic basement, and it differs from that of the adjacent Val Vedello basement. This suggests that the Aga and Vedello conglomerates were fed by two different basement sources: one consisting of the present day Val Vedello basement, and the other compatible with units B and C of the North East Orobic basement. According to the P/T ratios of the TmaxPTmax imprints, both basement sources recorded the Variscan collision but at a different crustal level. The age (c. 278 Ma) of the Aga and Vedello conglomerates constrains the minimum exhumation age for their basement sources.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arthaud, F. & Matte, P. 1977. Late Palaeozoic strike-slip faulting in Southern Europe and Northern Africa: Results of a right-lateral shear zone between the Appalachians and Urals. Geological Society of America Bulletin 88, 1305–20.2.0.CO;2>CrossRefGoogle Scholar
Assereto, R., Bosellini, A., Fantini Sestini, N. & Sweet, W. C. 1973. The Permian–Triassic boundary in the Southern Alps (Italy). In The Permian and Triassic Systems and their Mutual Boundary (eds Logan, A. & Hills, L. V.), pp. 176–99. Canadian Society of Petroleum Geologists, Memoir no. 2.Google Scholar
Bakos, F., Del Moro, A. & Visonà, D. 1990. The Hercynian volcano-plutonic association of Ganna (Lake Lugano, Central Southern Alps, Italy). European Journal of Mineralogy 2, 373–83.CrossRefGoogle Scholar
Barth, S. & Mohr, B. A. R. 1994. Palynostratigraphically determined age of the Tregiovo sedimentary complex in relation to radiometric emplacement ages of the Atesina volcanic complex (Permian, Southern Alps, N Italy). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 192, 273–92.Google Scholar
Bell, T. H., Rubenach, M. J. & Fleming, P. D. 1986. Porphyroblast nucleation, growth and dissolution in regional metamorphic rocks as a function of deformation partitioning during foliation development. Journal of Metamorphic Geology 4, 3767.CrossRefGoogle Scholar
Beltrami, G., Bianchi, A., Bonsignore, G., Callegari, E., Casati, P., Crespi, R., Dieni, I., Gnaccolini, M., Liborio, G., Montrasio, A., Mottana, A., Ragni, U., Schiavinato, G. & Zanettin, B. 1971. Note illustrative alla Carta Geologica d'Italia alla scala 1:100 000, Foglio 19, Tirano. Servizio Geologico d'Italia. Roma: Nuova Tecnica Grafica, 124 pp.Google Scholar
Bergomi, M. A. 2004. Integrated study of ‘Gneiss Chiari’ in the framework of the Orobic basement of Southern Alps (field relationships, mineral chemistry, geochemistry and geochronology). European Journal of Mineralogy, PLINIUS, Italian Supplement 30, 54–9.Google Scholar
Bocchio, R., Crespi, R., Liborio, G. & Mottana, A. 1980. Variazioni composizionali delle miche chiare nel metamorfismo progrado degli scisti sudalpini dell'alto lago di Como. Memorie di Scienze Geologiche, Padova 34, 153–76.Google Scholar
Bocchio, R., De Capitani, L., Liborio, G., Mottana, A., Nicoletti, M. & Petrucciani, C. 1981. K–Ar radiometric age determination of the Southalpine metamorphic complex, Western Orobic Alps (Italy). Neues Jahrbuch für Mineralogie 7, 289307.Google Scholar
Bonsignore, G., Casati, P., Crespi, R., Fagnani, G., Liborio, G., Montrasio, A., Mottana, A., Ragni, U., Schiavinato, G. & Venzo, S. 1971. Note Illustrative della Carta Geologica d'Italia alla scala 1:100.000, Fogli 7 e 18: Pizzo Bernina e Sondrio. Servizio Geologico d'Italia. Roma: Nuova Tecnica Grafica, 130 pp.Google Scholar
Cadel, G. 1986. Geology and uranium mineralization of the Collio Basin (Central Southern Alps, Italy). Uranium 2, 215–40.Google Scholar
Cadel, G., Cosi, M., Pennacchioni, G. & Spalla, M. I. 1996. A new map of the Permo-Carboniferous cover and Variscan metamorphic basement in the Central Orobic Alps, Southern Alps–Italy. Memorie di Scienze Geologiche, Padova 48, 153.Google Scholar
Cadel, G., Fuchs, Y. & Meneghel, L. 1987. Uranium mineralization associated with the evolution of a Permo-Carboniferous volcanic field. Example from Novazza and Val Vedello (Northern Italy). Uranium 3, 407–21.Google Scholar
Casati, P. & Gnaccolini, M. 1967. Geologia delle Alpi Orobie occidentali. Rivista Italiana di Paleontologia e Stratigrafia 73, 25172.Google Scholar
Cassinis, G., Cortesogno, L., Gaggero, L., Perotti, C. & Ronchi, A. 2007. Volcanic products from the Early Permian Collio Basin (southern Alps) and their geodynamic implications. Periodico di Mineralogia 76, 2547.Google Scholar
Cassinis, G., Dal Piaz, G. V., Eusebio, A., Gosso, G., Martinotti, G., Massari, M., Milano, P. F., Pennacchioni, G., Perello, M., Pessina, C. M., Roman, E., Spalla, M. I., Tosetto, S. & Zerbato, M. 1986. Report on a structural and sedimentological analysis in the Uranium province of the Orobic Alps, Italy. Uranium 2, 241–60.Google Scholar
Cassinis, G. & Doubinger, J. 1991. On the geological time of the typical Collio and Tregiovo continental beds in the Southalpine Permian (Italy), and some additional observations. Atti Ticinensi di Scienze della Terra, Pavia 34, 120.Google Scholar
Cassinis, G. & Doubinger, J. 1992. Artinskian and Ufimian palynomorph assemblages from the central Southern Alps, Italy, and their stratigraphic regional implications. In Contribution to Eurasian geology. International Congress on the Permian System of the World, Perm, Russia, 1991, part I (eds Nairn, A. E. M. & Korotev, V.), pp. 918. Columbia: University of South Carolina.Google Scholar
Cassinis, G., Elter, G., Rau, A. & Tongiorgi, M. 1980. Verrucano: a tectofacies of the Alpine-Mediterranean Southern Europe. Memorie della Società Geologica Italiana 20, 135–49.Google Scholar
Cassinis, G., Massari, F., Neri, C. & Venturini, C. 1988. The continental Permian of the Southern Alps. A review. Zeitschrift für Geologische Wissenschaften 16, 117–26.Google Scholar
Cassinis, G. & Neri, C. 1999. Outline of the Permian stratigraphy in the Southern Alps. In Stratigraphy and facies of the Permian deposits between eastern Lombardy and the western Dolomites. Field Trip Guidebook, 23–25 September 1999 (eds Cassinis, G., Cortesogno, L., Gaggero, L., Massari, F., Neri, C., Nicosia, U. & Pittau, P.), pp. 710. Earth Sciences Department, University of Pavia.Google Scholar
Cassinis, G. & Perotti, C. R. 1994. Interazione strutturale permiana tra la linea delle Giudicarie e i bacini di Collio, Tione e Tregiovo (Sudalpino centrale, N Italia). Bollettino della Società Geologica Italiana 112 (1993), 1021–36.Google Scholar
Cassinis, G. & Perotti, C. R. 1997. Tectonics and sedimentation in the western sector of the Permian Continental Collio Basin, Southern Alps, Italy. In Prace Państwowego Instytutu Geologicznego CLVII, Proceedings of the XIII International Congress on the Carboniferous and Permian, 28th August–2nd September, 1995, Kraków, Poland, part 2 (eds Podemsky, M., Dybová-Jachowicz, S., Jaworowski, K., Jureczka, J. & Wagner, R.), pp. 2532. Polish Geological Institute Warszawa.Google Scholar
Cassinis, G. & Peyronel Pagliani, G. 1976. Le Permien des Préalpes lombardes orientales. In The continental Permian in Central, West and South Europe. Proceedings of the NATO ASI, Mainz, 23 September–4 October 1975 (ed. Falke, H.), pp. 148–68. Series C: Mathematical and Physical Sciences, no. 22. Dordrecht, Holland: D. Reidel Publishing Company.Google Scholar
Cathelineau, M. 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23, 471–85.CrossRefGoogle Scholar
Cloos, M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts. Geological Society of America Bulletin 105, 715–37.2.3.CO;2>CrossRefGoogle Scholar
Colombo, A., Siletto, G. B. & Tunesi, A. 1994. Pre-Variscan magmatism in the central Southern Alps; the Monte Fioraro magmatic complex. Schweizerische Mineralogische und Petrographische Mitteilungen 74, 127–35.Google Scholar
Connolly, J. A. D. 1990. Multivariable phase diagrams; an algorithm based on generalized thermodynamics. American Journal of Science 290, 666718.CrossRefGoogle Scholar
de Bjerg, S. C., Mogessie, A. & Bjerg, E. 1992. HYPER-FORM; a Hyper Card program for Macintosh microcomputers to calculate mineral formulae from electron microprobe and wet chemical analysis. Computers and Geosciences 21, 1187–90.CrossRefGoogle Scholar
De Capitani, L., Delitala, M. C., Liborio, G., Mottana, A., Rodeghiero, F. & Thöni, M. 1994. The granitoid rocks of Val Navazze, Val Torgola and Val di Rango (Val Trompia, Lombardy, Italy). Memorie di Scienze Geologiche, Padova 46, 329–43.Google Scholar
De Sitter, L. U. & De Sitter-Koomans, C. M. 1949. Geology of the Bergamasc Alps, Lombardia, Italy. Leidse Geologische Mededelingen 14, 1257.Google Scholar
di Paola, S., Spalla, M. I. & Gosso, G. 2001. New structural mapping and metamorphic evolution of the Domaso Cortafò Zone (Southern Alps–Lake Como). Memorie di Scienze Geologiche, Padova 53, 114.Google Scholar
Diella, V., Spalla, M. I. & Tunesi, A. 1992. Contrasted thermo-mechanical evolutions in the Southalpine metamorphic basement of the Orobic Alps (Central Alps, Italy). Journal of Metamorphic Geology 10, 203–19.CrossRefGoogle Scholar
England, P. C. & Richardson, S. W. 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. Journal of Geological Society, London 134, 201–13.CrossRefGoogle Scholar
Gansser, A. & Pantič, N. 1988. Prealpine events along the Eastern Insubric Line (Tonale Line, northern Italy). Eclogae Geologicae Helvetiae 81, 567–77.Google Scholar
Giobbi Origoni, E. & Gregnanin, A. 1983. The crystalline basement of the ‘Massiccio delle Tre Valli Bresciane’: new petrographic and chemical data. Memorie della Società Geologica Italiana 26, 133–44.Google Scholar
Gosso, G., Siletto, G. B. & Spalla, M. I. 1997. International Ophiolite Symposium Field Excursion Guide–continental rifting to ocean floor metamorphism (21st–23rd September 1995): First day: H–T/L–P metamorphism and structures in the South-Alpine basement near Lake Como, Orobic Alps; intracontinental imprints of the Permo-Triassic rifting. Ofioliti 22, 133–45.Google Scholar
Gradstein, F., Ogg, J. & Smith, A. 2005. A geologic time scale 2004. Cambridge: Cambridge University Press, 589 pp.CrossRefGoogle Scholar
Green, N. L. & Usdansky, S. I. 1986. Ternary-feldspar mixing relations and thermobarometry. American Mineralogist 71, 1100–8.Google Scholar
Henry, D., Guidotti, C. & Thomson, J. 2005. The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90, 316–28.CrossRefGoogle Scholar
Hodges, K. V. & Crowley, P. D. 1985. Error estimation and empirical geothermobarometry for pelitic systems. American Mineralogist 70, 702–9.Google Scholar
Hoisch, T. D. 1989. A muscovite–biotite geothermometer. American Mineralogist 74, 565–72.Google Scholar
Hoisch, T. D. 1990. Empirical calibration of six geobarometers for the mineral assemblage quartz+ muscovite+biotite+plagioclase+garnet. Contribution to Mineralogy and Petrology 104, 225–34.CrossRefGoogle Scholar
Holdaway, M. J. 1971. Stability of andalusite and the aluminum silicate phase diagram. American Journal of Sciences 271, 97131.CrossRefGoogle Scholar
Holland, T. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–44.CrossRefGoogle Scholar
Hsü, L. C. 1968. Selected phase relationships in the system Al–Mn–Fe–Si–O–H: a model for garnet equilibria. Journal of Petrology 9, 4983.CrossRefGoogle Scholar
Hynes, A. & Forest, R. C. 1988. Empirical garnet-muscovite geothermometry in low-grade metapelites, Selwyn Range (Canadian Rockies). Journal of Metamorphic Geology 6, 297309.CrossRefGoogle Scholar
Italian IGCP 203 Group. 1986. Permian and Permian–Triassic boundary in the South-Alpine segment of the Western Tethys. Field Guide-Book, SGI-IGCP Project 203. Brescia (Italy): Pavia, 180 pp.Google Scholar
Jowett, E. C. 1991. Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Geological Association of Canada–Mineralogical Association of Canada–Society of Economic Geology, Joint Annual Meeting. Program with Abstracts 16, A62. Toronto.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Laubscher, H. P. 1983. Detachment, shear, and compression in the Central Alps. In Contributions to the tectonics and geophysics of mountain chains (eds Hatcher, R. D. J., Williams, H. & Zietz, I.), pp. 191211. Geological Society of America Memoir.CrossRefGoogle Scholar
Marotta, A. & Spalla, M. I. 2007. Permian–Triassic high thermal regime in the Alps: Result of late Variscan collapse or continental rifting? Validation by numerical modelling. Tectonics 26, TC4016 127.CrossRefGoogle Scholar
Massari, F. 1988. Some thoughts on the Permian–Triassic evolution of the South-Alpine area (Italy). In Permian and Permian–Triassic boundary in the South-Alpine segment of the Western Tethys, and additional regional reports. Proceedings of the Field Conference, Brescia, 4–12 July 1986 (ed. Cassinis, G.), pp. 179–88. Memorie della Società Geologica Italiana 34 (1986).Google Scholar
Massari, F., Neri, C., Pittau, P., Fontana, D. & Stefani, C. 1994. Sedimentology, palynostratigraphy and sequence stratigraphy of a continental to shallow-marine rift-related succession: Upper Permian of the eastern Southern Alps (Italy). Memorie di Scienze Geologiche, Padova 46, 119243.Google Scholar
Massonne, H. J. & Schreyer, W. 1987. Phengite geobarometry based on the limiting assemblage with k-feldspar, phlogopite and quartz. Contributions to Mineralogy and Petrology 96, 212–24.CrossRefGoogle Scholar
Milano, P. F., Pennacchioni, G. & Spalla, M. I. 1988. Alpine and pre-Alpine tectonics in the Central Orobic Alps (Southern Alps). Eclogae Geologicae Helvetiae 81, 273–93.Google Scholar
Mottana, A., Nicoletti, M., Petrucciani, G., Liborio, G., De Capitani, L. & Bocchio, R. 1985. Pre-Alpine and Alpine evolution of the Southalpine basement of the Orobic Alps. Geologische Rundschau 74, 353–66.CrossRefGoogle Scholar
Muttoni, G., Kent, D. V., Garzanti, E., Brack, P., Abrahamsen, N. & Gaetani, M. 2003. Early Permian Pangea ‘B’ to Late Permian Pangea ‘A’. Earth and Planetary Science Letters 215, 379–94.CrossRefGoogle Scholar
Passchier, C. W. & Trouw, R. A. J. 2005. Microtectonics. Berlin, Heidelberg, New York: Springer, 366 pp.Google Scholar
Peacock, S. M. 1993. The importance of blueschist-eclogite dehydration reactions in subducting oceanic crust. Geological Society of America Bulletin 105, 684–94.2.3.CO;2>CrossRefGoogle Scholar
Perchuk, L. L. 1989. Vzaimosoglasovaniye nekotorykh Fe–Mg–geotermometrov na osnove zakona Nernsta; reviziya. Translated Title: Internal consistency of some Fe–Mg geothermometers based on Nernst law; a revision. Geokhimiya 5, 611–22.Google Scholar
Philippe, S., Villemaire, C., Lancelot, J. R., Girod, M. & Mercadier, H. 1987. Données minéralogiques et isotopiques sur deux gites hydrothermaux uranifères du bassin volcano-sédimentarire de Collio Orobico (Alpes Bergamasques): Mise en évidence d'une phase de remobilisation crétacée. Bulletin de Minéralogie 110, 283304.CrossRefGoogle Scholar
Pinarelli, L., Del Moro, A. & Boriani, A. 1988. Rb–Sr geochronology of Lower Permian plutonism in Massiccio dei Laghi, Southern Alps (NW Italy). Rendiconti della Società Italiana di Mineralogia e Petrologia 42, 411–28.Google Scholar
Platt, J. P. 1998. Thermal evolution, rate of exhumation, and tectonic significance of metamorphic rocks from the floor of the Alboran extensional basin, western Mediterranean. Tectonics 17, 671–89.CrossRefGoogle Scholar
Riklin, K. A. 1983. Kontaktmetamorphose Permischer Sandsteine im Adamello Massif. Published Ph.D. thesis, E.T.H. Zürich.Google Scholar
Rock, N. M. S. & Carroll, G. W. 1990. MINTAB; a general-purpose mineral recalculation and tabulation program for Macintosh microcomputers. American Mineralogist 75, 424–30.Google Scholar
Rottura, A., Del Moro, A., Caggianelli, A., Bargossi, G. M. & Gasparotto, G. 1997. Petrogenesis of the Monte Croce granitoids in the contexts of Permian magmatism in the Southern Alps, Italy. European Journal of Mineralogy 9, 12931310.CrossRefGoogle Scholar
Sanders, C. A. E., Bertotti, G., Tommasini, S., Davies, G. R. & Wijbrans, J. R. 1996. Triassic pegmatites in the Mesozoic middle crust of the Southern Alps (Italy): fluid inclusions, radiometric dating and tectonic implications. Eclogae Geologicae Helvetiae 89, 505–25.Google Scholar
Schaltegger, U. & Brack, P. 2007. Crustal-scale magmatic systems during intracontinental strike-slip tectonics: U, Pb and Hf isotopic constraints from Permian magmatic rocks of the Southern Alps. International Journal of Earth Sciences (Geologische Rundschau) 96, 1131–51.CrossRefGoogle Scholar
Schreurs, J. 1985. Prograde metamorphism of metapelites, garnet-biotite thermometry and prograde changes of biotite chemistry in high grade rocks of West Uusimaa, southwest Finland. Lithos 18, 6980.CrossRefGoogle Scholar
Sciunnach, D. 2001. The Lower Permian in the Orobic Anticline (Southern Alps, Lomabardy): a review based on new stratigraphic and petrographic data. Rivista Italiana di Paleontologia e Stratigrafia 107, 4768.Google Scholar
Siletto, G. B. 1991. Cronologia relativa dei sovrascorrimenti in aree selezionate del basamento Orobico. Published Ph.D. thesis, Università degli studi di Milano.Google Scholar
Siletto, G. B., Spalla, M. I., Tunesi, A., Lardeaux, J. M. & Colombo, A. 1993. Pre-Alpine structural and metamorphic histories in the Orobic Southern Alps, Italy. In Pre-Mesozoic Geology in the Alps (eds von Raumer, J. F. & Neubauer, F.), pp. 585–98. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Spalla, M. I., Carminati, E., Ceriani, S., Oliva, A. & Battaglia, D. 1999. Influence of deformation partitioning and metamorphic re-equilibration on P–T path reconstruction in the pre-Alpine basement of central southern Alps (northern Italy). Journal of Metamorphic Geology 17, 319–36.CrossRefGoogle Scholar
Spalla, M. I., Diella, V., Pigazzini, N., Siletto, G. B. & Gosso, G. 2006. Significato tettonico della transizione Cld–And nelle metapeliti del Basamento Sudalpino (Alta Val Camonica). Rendiconti della Società Geologica Italiana 2, 182–3.Google Scholar
Spalla, M. I. & Gosso, G. 1999. Pre-Alpine tectonometamorphic units in the central Southern Alps: structural and metamorphic memory. 3rd Workshop on Alpine Geological Studies. Memorie di Scienze Geologiche, Padova 51 (1), 221–9.Google Scholar
Spalla, M. I., Gosso, G., Siletto, G. B., di Paola, S. & Magistroni, C. 1998. Strumenti per individuare unità tettono-metamorfiche nel rilevamento geologico del basamento cristallino. Memorie della Società Geologica 50, 155–64.Google Scholar
Spalla, M. I., Zanoni, D., Gosso, G. & Zucali, M. 2007. Deciphering the geologic memory of a Permian conglomerate of the Southern Alps by pebble P–T estimates. International Journal of Earth Sciences (Geologische Rundschau) 98 (2009), 203–26.CrossRefGoogle Scholar
Spalla, M. I., Zucali, M., di Paola, S. & Gosso, G. 2005. A critical assessment of the tectono-thermal memory of rocks and definition of the tectonometamorphic units: evidence from fabric and degree of metamorphic transformations. In Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere (eds Gapais, D., Brun, J. P. & Cobbold, P. R.), pp. 227–47. Geological Society of London, Special Publication no. 243.Google Scholar
Spear, F. S. & Cheney, J. T. 1989. A petrogenetic grid for pelitic schist in the system SiO2–Al2O3–FeO, MgO–K2O–H2O. Contributions to Mineralogy and Petrology 101, 149–64.CrossRefGoogle Scholar
Thompson, A. B. 1981. The Pressure–Temperature (P,T) plane viewed by geophysicists and petrologists. Terra Cognita 1, 1120.Google Scholar
Thöni, M., Mottana, A., Delitala, M. C., De Capitani, L. & Liborio, G. 1992. The Val Biandino composite pluton: a Late Hercynian intrusion into the South Alpine metamorphic basement of the Alps (Italy). Neues Jahrbuch für Mineralogie 12, 545–54.Google Scholar
Vernon, R. H. 2004. A practical guide to rock microstructure. Cambridge University Press, 594 pp.CrossRefGoogle Scholar
Wu, C. M., Wang, X. S., Yang, C. H., Geng, Y. S. & Liu, F. L. 2002. Empirical garnet-muscovite geothermometry in metapelities. Lithos 62, 113.CrossRefGoogle Scholar
Ziegler, P. A. 1988. Evolution of the Arctic-North Atlantic and the Western Tethys. American Association of Petroleum Geologists, Memoir 43, 198 pp. Tulsa, Oklahoma.CrossRefGoogle Scholar