Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T23:33:26.412Z Has data issue: false hasContentIssue false

U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications

Published online by Cambridge University Press:  28 April 2009

XIAOPING XIA
Affiliation:
Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
MIN SUN*
Affiliation:
Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
GUOCHUN ZHAO
Affiliation:
Department of Earth Sciences, the University of Hong Kong, Pokfulam Road, Hong Kong, China
FUYUAN WU
Affiliation:
Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China
LIEWEN XIE
Affiliation:
Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100029, China
*
Author for correspondence: minsun@hkucc.hku.hk

Abstract

Two types of metasedimentary rocks occur in the Trans-North China Orogen of the North China Craton. One type consists of highly metamorphosed supracrustal rocks with protoliths of mature cratonic shale, called khondalites, as found in the Lüliang Complex; rocks of the other type are also highly metamorphosed but less mature, as represented by the Wanzi supracrustal assemblage in the Fuping Complex. U–Pb isotopic data for detrital zircons from khondalites show a provenance dominated by 1.9–2.1 Ga Palaeoproterozoic rocks. These detrital zircons display a wide range of εHf values from −16.0 to +9.2 and give Hf isotopic model ages mostly around 2.3 Ga. The high positive εHf values approach those for the depleted mantle at 2.1 Ga, highlighting a juvenile crustal growth event in Palaeoproterozoic times. Hf isotopic data also imply that c. 2.6 Ga old crustal material was involved in the Palaeoproterozoic magmatic event. These data are similar to those for the khondalitic rocks from the interior of the Western Block of the North China Craton, suggesting a common provenance. In contrast, other metasedimentary rocks in the Trans-North China Orogen, such as the Wanzi supracrustal assemblage in the Fuping Complex, have a source region with both Palaeoproterozoic and Archaean rocks. Their detrital zircon Hf isotopic data indicate reworking of old crustal material and a lack of significant juvenile Palaeoproterozoic magmatic input. These rocks are similar to the coevally deposited meta-sedimentary rocks in the interior of the Eastern Block. We propose that the Lüliang khondalites were deposited on the eastern margin of the Western Block in a passive continental margin environment and were thrust eastward later during collision with the Eastern Block. Other metasedimentary rocks in the Trans-North China Orogen were deposited on the western margin of the Eastern Block in a continental arc environment. Our data support the eastward subduction model for the Palaeoproterozoic tectonic evolution of the North China Craton.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, J. 1996. Archaean – a period of the amalgamation of continental nuclei. In The Precambrian Crustal Evolution of China (eds Ma, X. Y. & Bai, J.), pp. 1216. Beijing: Geological Publishing House (in Chinese).Google Scholar
Bai, J., Wang, R. Z. & Guo, J. J. 1992. The major geologic events of early Precambrian and their dating in Wutaishan region. Beijing: Geological Publishing House, 55 pp. (in Chinese with English abstract).Google Scholar
Bodet, F. & Scharer, U. 2000. Evolution of the SE-Asian continent from U–Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers. Geochimica et Cosmochimica Acta 64, 2067–91.CrossRefGoogle Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., German, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.CrossRefGoogle Scholar
Condie, K. C., Beyer, E., Belousova, E., Griffin, W. L. & O'Reilly, S. Y. 2005. U–Pb isotopic ages and Hf isotopic composition of single zircons:, The search for juvenile Precambrian continental crust. Precambrian Research 139, 42100.CrossRefGoogle Scholar
Condie, K. C., Boryta, M. D., Liu, J. Z. & Qian, X. L. 1992. The Origin of Khondalites – Geochemical Evidence from the Archaean to Early Proterozoic Granulite Belt in the North China Craton. Precambrian Research 59, 207–23.CrossRefGoogle Scholar
Faure, M., Trap, P., Lin, W., Monié, P. & Bruguier, O. 2007. The formation of the North China Craton by two Palaeoproterozoic continental collisions in Lüliang– Hengshan–Wutaishan–Fuping massifs. Episodes 30, 112.CrossRefGoogle Scholar
Gaudette, H. E., Vitrac-Michard, A. & Allègre, C. J. 1981. North American Precambrian history recorded in a single sample and high–resolution U–Pb systematics of the Potsdam sandstone detrital zircons, New York State. Earth and Planetary Science Letters 54, 248–60.CrossRefGoogle Scholar
Geng, Y. S., Wan, Y. S., Shen, Q. H., Li, H. M. & Zhang, R. X. 2000. Chronological framework of the Early Precambrian important events in the Lüliang Area, Shanxi Province. Acta Geologica Sinica 74, 216–23 (in Chinese with English abstract).Google Scholar
Guan, H., Sun, M., Wilde, S. A., Zhou, X. H. & Zhai, M. G. 2002. SHRIMP U–Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Research 113, 118.Google Scholar
Guo, J. H., O'Brien, P. J. & Zhai, M. 2002. High-pressure granulites in the Sanggan area, North China craton: metamorphic evolution, P–T paths and geotectonic significance. Journal of Metamorphic Geology 20, 741–56.CrossRefGoogle Scholar
Guo, J. H., Sun, M., Chen, F. K. & Zhai, M. G. 2005. Sm–Nd and SHRIMP U–Pb zircon geochronology of high-pressure granulites in the Sanggan area, North China Craton: timing of Palaeoproterozoic continental collision. Journal of Asian Earth Sciences 24, 629–42.CrossRefGoogle Scholar
Guo, J. H., Wang, S. S., Sang, H. Q. & Zhai, M. G. 2001. Ar-40–Ar-39 age spectra of garnet porphyroblast: Implications for metamorphic age of high-pressure granulite in the North China craton. Acta Petrologica Sinica 17 (3), 436–42 (in Chinese with English abstract).Google Scholar
Guo, J. H. & Zhai, M. G. 2001. Sm–Nd age dating of high-pressure granulites and amphibolite from Sanggan area, North China craton. Chinese Science Bulletin 46, 106–10.Google Scholar
Guo, J. H., Zhai, M. G. & Xu, R. H. 2001. Timing of the granulite facies metamorphism in the Sanggan area, North China craton: zircon U–Pb geochronology. Science in China Series D: Earth Science 44, 1010–18.CrossRefGoogle Scholar
Jahn, B. M., Auvray, B., Cornichet, J., Bai, Y. D., Shen, Q. H. & Liu, D. Y. 1987. 3.5 Ga old amphibolites from eastern Hebei Province, China: field occurrence, petrography, Sm–Nd isochron age and REE geochemistry. Precambrian Research 34, 311–46.Google Scholar
Jahn, B. M., Wu, F. Y. & Hong, D. W. 2000. Important crustal growth in the Phanerozoic: isotopic evidence of granitoids from east-central Asia. Proceedings of the Indian Academy of Science (Earth and Planetary Sciences) 109, 520.Google Scholar
Kröner, A., Cui, W. Y., Wang, C. Q. & Nemchin, A. A. 1998. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of Asian Earth Sciences 16, 519–32.Google Scholar
Kröner, A., Wilde, S. A., Li, J. H. & Wang, K. Y. 2005 a. Age and evolution of a late Archaean to Palaeoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24, 577–95.Google Scholar
Kröner, A., Wilde, S. A., O'Brien, P. J., Li, J. H., Passchier, C. W., Walte, N. P. & Liu, D. Y. 2005 b. Field relationships, geochemistry, zircon ages and evolution of a late Archaean to Palaeoproterozoic lower crustal section in the Hengshan Terrain of northern China. Acta Geologica Sinica (English Edition) 79, 605–32.Google Scholar
Kröner, A., Wilde, S. A., Zhao, G. C., O'Brien, P. J., Sun, M., Liu, D. Y., Wan, Y. S., Liu, S. W. & Guo, J. H. 2006. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China: Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China Craton. Precambrian Research 146, 4567.CrossRefGoogle Scholar
Kusky, T. M. & Li, J. H. 2003. Palaeoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences 22, 383–97.Google Scholar
Kusky, T., Li, J. & Santosh, M. 2007. The Palaeoproterozoic North Hebei Orogen: North China craton's collisional suture with the Columbia supercontinent. Gondwana Research 12, 428.Google Scholar
Li, J. H., Kröner, A., Qian, X. L. & O'Brien, P. 2000. Tectonic evolution of an early Precambrian high-pressure granulite belt in the North China craton. Acta Geologica Sinica (English Edition) 74, 246–58.Google Scholar
Li, J. H. & Kusky, T. 2007. A Late Archaean foreland fold and thrust belt in the North China Craton: Implications for early collisional tectonics. Gondwana Research 12, 4766.Google Scholar
Li, J. H., Qian, X. L. & Liu, S. W. 2000. Geochemistry of khondalites from the central portion of the North China Craton (NCC), implications for the continental cratonization in the NeoArchaean. Science in China Series D: Earth Science 43, 253–65.Google Scholar
Li, J. H., Wang, K. Y., Wang, C. Q., Liu, X. H. & Zhao, Z. Y. 1990. Early Proterozoic collision orogenic belt in Wutaishan area. Scientia Geologica Sinica 64, 111 (in Chinese with English abstract).Google Scholar
Li, S. G., Hart, S. R. & Wu, T. S. 1990. Rb–Sr and Sm–Nd Isotopic Dating of an Early Precambrian Spilite–Keratophyre Sequence in the Wutaishan Area, North China – Preliminary Evidence for Nd-Isotopic Homogenization in the Mafic and Felsic Lavas during Low-Grade Metamorphism. Precambrian Research 47, 191203.CrossRefGoogle Scholar
Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S. & Shen, Q. H. 1992. Remnants of ≥3800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology 20, 339–42.Google Scholar
Liu, S. W., Pan, Y. M., Li, J. H., Li, Q. G. & Zhang, J. 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambrian Research 117, 4156.Google Scholar
Liu, C. H. & Zhao, G. C. 2008. Detrital zircon U–Pb and Hf isotopic study for the Yejishan group of the Lüliang Complex in the Trans-North China Orogen. In The Proceedings of Gondwana 13: Program & Abstracts (eds Xiao, W.-J., Zhai, M.-G., Li, X.-H. & Liu, F.), pp. 121–2. Dali, Yunnan Province, China.Google Scholar
Liu, S. W., Zhao, G. C., Wilde, S. A., Shu, G. M., Sun, M., Li, Q. G., Tian, W. & Zhang, J. 2006. Th–U–Pb monazite geochronology of the Lüliang and Wutai Complexes: constraints on the tectonothermal evolution of the Trans-North China Orogen. Precambrian Research 148, 205–25.Google Scholar
Lu, X. P., Wu, F. Y., Guo, J. H., Wilde, S. A., Yang, J. H., Liu, X. M. & Zhang, X. O. 2006. Zircon U–Pb geochronological constraints on the Palaeoproterozoic crustal evolution of the Eastern Block in the North China Craton. Precambrian Research 146, 138–64.Google Scholar
Luo, Y., Sun, M., Zhao, G. C., Ayers, J. C., Li, S. Z., Xia, X. P. & Zhang, J. 2008. A comparison of U–Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Group: Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton. Precambrian Research 163, 279306.CrossRefGoogle Scholar
Luo, Y., Sun, M., Zhao, G. C., Li, S. Z., Xu, P., Ye, K. & Xia, X. P. 2004. LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research 134, 349–71.CrossRefGoogle Scholar
Polat, A., Herzberg, C., Muenker, C., Rodgers, R., Kusky, T., Li, J. H., Fryer, B. & Delaney, J. 2006. Geochemical and petrological evidence for a suprasubduction zone origin of NeoArchaean (c. 2.5 Ga) peridotites, central orogenic belt, North China craton. Geological Society of America Bulletin 118, 771–84.CrossRefGoogle Scholar
Polat, A., Kusky, T., Li, J. H., Fryer, B., Kerrich, R. & Patrick, K. 2005. Geochemistry of NeoArchaean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: Implications for geodynamic setting and continental growth. Geological Society of American Bulletin 117, 1387–99.Google Scholar
Qian, X. L. & Li, J. H. 1999. The acknowledgement of Neo-Archaean unconformity event in North China Craton and its tectonic significance. Science in China Series D-Earth Science 29, 18 (in Chinese).Google Scholar
Rogers, J. J. W. & Santosh, M. 2002. Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Research 5, 522.Google Scholar
Santosh, M., Wilde, S. A. & Li, J. H. 2007. Timing of Palaeoproterozoic ultrahigh-temperature metamorphism in the North China Craton: evidence from SHRIMP U–Pb zircon geochronology. Precambrian Research 159, 178–96.CrossRefGoogle Scholar
Song, B., Nutman, A. P., Liu, D. Y. & Wu, J. S. 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research 78, 7994.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental crust: its composition and evolution: An examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell Scientific Publications, 312 pp.Google Scholar
Trap, P., Faure, M., Lin, W. & Monié, P. 2007. Late Palaeoproterozoic (1900–1800 Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area: Implications for the understanding of the Trans-North-China Belt, North China Craton. Precambrian Research 156, 85106.CrossRefGoogle Scholar
Veevers, J. J., Saeed, A., Belousova, E. A. & Griffin, W. L. 2005. U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircons in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth Science Review 68, 245–79.Google Scholar
Wan, Y. S., Geng, Y. S., Liu, F. L., Shen, Q. H., Liu, D. Y. & Song, B. 2000 a. Age and composition of the khondalite series of the North China Craton and its adjacent area. Progress in Precambrian Research 23, 221–37 (in Chinese).Google Scholar
Wan, Y. S., Geng, Y. S., Shen, Q. H. & Zhang, R. X. 2000 b. Khondalite series – geochronology and geochemistry of the Jiehekou Group in Lüliang area. Acta Petrologica Sinica 16, 4958 (in Chinese).Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J. S., Shi, Y. R., Yin, X. Y. & Zhou, H. Y. 2006 a. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: Evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.CrossRefGoogle Scholar
Wan, Y. S., Wilde, S. A., Liu, D. Y., Song, B., Yang, C. X. & Yin, X. Y. 2006 b. Further evidence for ~1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U–Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province. Gondwana Research 9, 189–97.Google Scholar
Wang, K. Y., Li, J. L., Hao, J., Li, J. H. & Zhou, S. P. 1996. The Wutaishan orogenic belt within the Shanxi Province, northern China: A record of late Archaean collision tectonics. Precambrian Research 78, 95103.CrossRefGoogle Scholar
Wang, R. Z. 1993. Geochronology of the Sheeteng Group in the centre Inner Mongolia and its comparison with the Wutai Group in Shanxi Province. Shanxi Geology 8, 275–81 (in Chinese with English abstract).Google Scholar
Wang, Y. J., Fan, W. M., Zhang, Y. & Guo, F. 2003. Structural evolution and 40Ar/39Ar dating of the Zanhuang metamorphic domain in the North China Craton: constraints on Palaeoproterozoic tectonothermal overprinting. Precambrian Research 122, 159–82.Google Scholar
Wang, Y. J., Fan, W. M., Zhang, Y. H., Guo, F., Zhang, H. & Peng, P. 2004. Geochemical Ar-40/Ar-39 geochronological and Sr–Nd isotopic constraints on the origin of Palaeoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton. Precambrian Research 135, 5577.Google Scholar
Wang, Y. J., Zhao, G. C., Fan, W. M., Peng, T. P., Sun, L. H. & Xia, X. P. 2007. LA-ICP-MS U–Pb zircon geochronology and geochemistry of Palaeoproterozoic mafic dikes from western Shandong Province: Implications for back-arc basin magmatism in the Eastern North China Craton. Precambrian Research 154, 107–24.CrossRefGoogle Scholar
Wilde, S. A., Cawood, P., Wang, K. Y. & Nemchin, A. 1997. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China Craton. Proceedings of the 30th International Geological Congress, Beijing. Precambrian Geology. Metamorphic Petrology 17, 7588.Google Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y. & Nemchin, A. 1998. SHRIMP U–Pb zircon dating of granites and gneisses in the Taihangshan–Wutaishan area: implications for the timing of crustal growth in the North China craton. Chinese Science Bulletin 43, 144–5.Google Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y., Nemchin, A. & Zhao, G. C. 2004 a. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U–Pb geochronology. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J., Aitchison, J. C. & Ali, J.), pp. 526. Geological Society of London: Special Publication no. 226.Google Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y. & Nemchin, A. 2005. Granitoid evolution in the late Archaean Wutai Complex, North China Craton. Journal of Asian Earth Sciences 24, 597613.Google Scholar
Wilde, S. A., Zhao, G. C. & Sun, M. 2002. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga; some speculations on its position within a global Palaeoproterozoic Supercontinent. Gondwana Research 5, 8594.Google Scholar
Wilde, S. A., Zhao, G. C., Wang, K. Y. & Sun, M. 2004 b. First SHRIMP zircon U–Pb ages for the Hutuo Group in Wutaishan: further evidence for amalgamation of North China Craton. Chinese Science Bulletin 49, 8390.Google Scholar
Wu, C. H. & Zhong, C. T. 1998. The Paleoprotozoic SW-NE collision model for the central North China Craton. Progress in Precambrian Research 21, 2850 (in Chinese).Google Scholar
Wu, J. S., Geng, Y. S., Shen, Q. H., Liu, D. Y., Li, Z. L. & Zhao, D. M. 1991. The early Precambrian significant geological events in the North China Craton. Beijing: Geological Publishing House, pp. 1115 (in Chinese with English abstract).Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Li, H. M. & Zhou, M. F. 2004. Spot zircon U–Pb isotope analysis by ICP-MS coupled with a frequency quintupled (213 nm) Nd-YAG laser system. Geochemical Journal 38, 191200.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C. & Luo, Y. 2006 a. LA-ICP-MS U–Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance. Precambrian Research 144, 199212.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J., He, Y. H. & Zhang, J. H. 2006 b. U–Pb and Hf isotope study of detrital zircons from the Wanzi Supercrustals: constraints on the tectonic setting and evolution of the Fuping Complex, Trans-North China Orogen. Acta Geologica Sinica 80, 844–63.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J. H. & Luo, Y. 2006 c. U–Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters 241, 581–93.Google Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J. & He, Y. H. 2008. Palaeoproterozoic crustal growth in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr–Nd isotopic compositions of the khondalites from the Jining Complex. American Journal of Science 308, 304–27.Google Scholar
Xu, P., Wu, F. Y., Xie, L. W. & Yang, Y. H. 2004. Hf isotopic compositions of the standard zircons for U–Pb dating. Chinese Science Bulletin 49, 1642–8 (in Chinese).Google Scholar
Yu, J. H., Wang, D. Z. & Wang, X. Y. 1997. Ages of the Lüliang Group and its main metamorphism in the Lüliang Mountains, Shanxi: evidence from single-grain zircon U–Pb ages. Geology Review 43, 403–8 (in Chinese).Google Scholar
Zhai, M. G., Bian, A. G. & Zhao, T. P. 2000. The amalgamation of the supercontinent of North China Craton at the end of Neo–Archaean and its breakup during late Palaeoproterozoic and Mesoproterozoic. Science in China Series D 43, 219–32.CrossRefGoogle Scholar
Zhai, M. G., Guo, J. H. & Yan, Y. H. 1992. Discovery and preliminary study of the Archaean high-pressure granulites in North China. Science in China Series D: Earth Science 12, 1325–30.Google Scholar
Zhai, M. G. & Liu, W. J. 2003. Palaeoproterozoic tectonic history of the North China craton: a review. Precambrian Research 122, 183–99.Google Scholar
Zhang, J., Zhao, G. C., Li, S. Z., Sun, M., Liu, S. W., Wilde, S. A., Kröner, A. & Yin, C. Q. 2007. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen. Journal of Structure Geology 29, 933–49.Google Scholar
Zhang, J., Zhao, G. C., Sun, M., Liu, S. W., Xia, X. P. & He, Y. H. 2006 a. U–Pb Zircon dating of the granitic conglomerates of the Hutuo Group: affinities to the Wutai granitoids and significance to the tectonic evolution of the Trans-North China Orogen. Acta Geologica Sinica (English edition) 80, 886–98.Google Scholar
Zhang, J., Zhao, G. C., Sun, M., Wilde, S. A., Li, S. Z. & Liu, S. W. 2006 b. High-pressure mafic granulites in the Trans-North China Orogen: Tectonic significance and age. Gondwana Research 9, 349–62.Google Scholar
Zhao, G. C., Cawood, P. & Lu, L. Z. 1999. Petrology and P–T history of the Wutai amphibolites: implications for tectonic evolution of the Wutai Complex, China. Precambrian Research 93, 181–99.CrossRefGoogle Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Lu, L. Z. 2001 a. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. Journal of Petrology 42, 1141–70.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2000 a. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Palaeoproterozoic tectonic evolution. Precambrian Research 103, 5588.Google Scholar
Zhao, G. C., Cawood, P. A., Wilde, S. A. & Sun, M. 2002 a. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Review 59, 125–62.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archaean to Palaeoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2003. Assembly, accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: Records in the North China Craton. Gondwana Research 6, 417–34.Google Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Review 67, 91123.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 1998. Thermal evolution of Archaean basement rocks from the eastern part of the North China carton and its bearing on tectonic setting. International Geology Review 40, 706–21.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 1999 a. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics, 310, 3753.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 1999 b. Thermal evolution of two textural types of mafic granulites in the North China craton: evidence for both mantle plume and collisional tectonics. Geological Magazine 136, 223–40.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 2000 b. Petrology and P–T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China craton. Journal of Metamorphic Geology 18, 375–91.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2001 b. Archaean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution. Precambrian Research 107, 4573.Google Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2002 b. SHRIMP U–Pb zircon ages of the Fuping Complex: Implications for late Archaean to Palaeoproterozoic accretion and assembly of the North China Craton. American Journal of Science 302, 191226.Google Scholar
Zhao, G. C., Wilde, S. A., Sun, M., Li, S. Z., Li, X. P. & Zhang, J. 2008. SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research 160, 213–26.Google Scholar
Supplementary material: File

Xia supplementary material

Table.doc

Download Xia supplementary material(File)
File 546.3 KB