Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T22:19:59.831Z Has data issue: false hasContentIssue false

U–Pb age and Lu–Hf signatures of detrital zircon from Palaeozoic sandstones in the Oslo Rift, Norway

Published online by Cambridge University Press:  29 October 2013

MAGNUS KRISTOFFERSEN*
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N–0316 Oslo, Norway
TOM ANDERSEN
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N–0316 Oslo, Norway
ARILD ANDRESEN
Affiliation:
Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N–0316 Oslo, Norway
*
*Author for correspondence: magnus.kristoffersen@geo.uio.no

Abstract

U–Pb and Lu–Hf isotope analyses of detrital zircon from the latest Ordovician (Hirnantian) Langøyene Formation, the Late Silurian Ringerike Group and the Late Carboniferous Asker Group in the Oslo Rift were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Overall the U–Pb dating yielded ages within the range 2861–313 Ma. The U–Pb age and Lu–Hf isotopic signatures correspond to virtually all known events of crustal evolution in Fennoscandia, as well as synorogenic intrusions from the Norwegian Caledonides. Such temporally and geographically diverse source areas likely reflect multiple episodes of sediment recycling in Fennoscandia, and highlights the intrinsic problem of using zircon as a tracer-mineral in ‘source to sink’ sedimentary provenance studies. In addition to its mostly Fennoscandia-derived detritus, the Asker Group also have zircon grains of Late Devonian – Late Carboniferous age. Since no rocks of these ages are known in Fennoscandia, these zircons are inferred to be derived from the Variscan Orogen of central Europe.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åhäll, K.-I. & Connelly, J. N. 2008. Long-term convergence along SW Fennoscandia: 330 m.y. of proterozoic crustal growth. Precambrian Research 161, 452–74.Google Scholar
Andersen, T. 2013. Age, Hf isotope and trace element signatures of detrital zircons in the Mesoproterozoic Eriksfjord sandstone, southern Greenland: are detrital zircons reliable guides to sedimentary provenance and timing of deposition? Geological Magazine 150, 426–40.CrossRefGoogle Scholar
Andersen, T., Andersson, U. B., Graham, S., Åberg, G. & Simonsen, S. L. 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of the Geological Society, London 166, 233–47.Google Scholar
Andersen, T., Graham, S. & Sylvester, A. G. 2009. The geochemistry, Lu–Hf isotope systematics and petrogenesis of late mesoproterozoic A–type granites in southwestern Fennoscandia. The Canadian Mineralogist 47, 1399–422.Google Scholar
Andersen, T. & Griffin, W. L. 2004. Lu–Hf and U–Pb isotope systematics of zircon from the Storgangen intrusion, Rogaland Intrusive Complex, SW Norway: implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos 73, 271–88.CrossRefGoogle Scholar
Andersen, T., Griffin, W. L., Jackson, S. E., Knudsen, T. L. & Pearson, N. J. 2004. Mid–Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73, 289318.Google Scholar
Andersen, T., Griffin, W. L. & Pearson, N. J. 2002. Crustal evolution in the SW part of the Baltic Shield: the Hf isotope evidence. Journal of Petrology 43, 1725–47.Google Scholar
Andersen, T., Griffin, W. L. & Sylvester, A. G. 2007. Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93, 273–87.CrossRefGoogle Scholar
Andersen, T., Saeed, A., Gabrielsen, R. H. & Olaussen, S. 2011. Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U–Pb, Lu–Hf and trace element analyses of detrital zircon by laser ablation ICMPS. Norwegian Journal of Geology 91, 118.Google Scholar
Andersson, U. B., Sjöström, H., Högdahl, K. H. O. & Eklund, O. 2004. The Transscandinavian Igneous Belt, evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution (eds Högdahl, K., Andersson, U. B. & Eklund, O.), pp. 104–12. Geological Survey of Finland, Special Paper 37.Google Scholar
Andresen, A. 2013. Basin development and orogenesis in the North Atlantic–Barents Sea Region. NGF Abstracts and Proceedings 1, 6.Google Scholar
Augustsson, C., Münker, C., Bahlburg, H. & Fanning, C. M. 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf–isotope study of single detrital zircon. Journal of the Geological Society, London 163, 983–95.Google Scholar
Bingen, B., Davis, W. J., Hamilton, M. A., Engvik, A. K., Stein, H. J., Skar, O. & Nordgulen, O. 2008. Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Norwegian Journal of Geology 88, 1342.Google Scholar
Bingen, B., Griffin, W. L., Torsvik, T. H. & Saeed, A. 2005 a. Timing of Late Neoproterozoic glaciation on Baltica constrained by detrital zircon geochronology in the Hedmark Group, south-east Norway. Terra Nova 17, 250–8.CrossRefGoogle Scholar
Bingen, B., Skår, Ø., Marker, M., Sigmond, E. M. O., Nordgulen, Ø., Ragnhildstveit, J., Mansfeld, J., Tucker, R. D. & Liegeois, J. P. 2005 b. Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Norwegian Journal of Geology 85, 87116.Google Scholar
Bingen, B. & Solli, A. 2009. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: synopsis for detrital zircon provenance studies. Norwegian Journal of Geology 89, 267–90.Google Scholar
Bingen, B. & van Breemen, O. 1998. Tectonic regimes and terrane boundaries in the high-grade Sveconorwegian belt of SW Norway, inferred from U–Pb zircon geochronology and geochemical signature of augen gneiss suites. Journal of the Geological Society, London 155, 143–54.CrossRefGoogle Scholar
Bjørlykke, K. 1974. Depositional history and geochemical composition of Lower Palaeozoic epicontinental sediments from the Oslo Region. Norges Geologiske Undersøkelse Bulletin 305, 181.Google Scholar
Botev, Z. I., Grotowski, J. F. & Kroese, D. P. 2010. Kernel density estimation via diffusion. The Annals of Statistics 38, 2916–57.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.Google Scholar
Braithwaite, C. J. R., Owen, A. W. & Heath, R. A. 1995. Sedimentological changes across the Ordovician–Silurian boundary in Hadeland and their implications for regional patterns of the deposition in the Oslo Region. Norsk Geologisk Tidsskrift 75, 199218.Google Scholar
Brenchley, P. J. & Newall, G. 1975. The stratigraphy of the Upper Ordovician Stage 5 in the Oslo–Asker district, Norway. Norsk Geologisk Tidsskrift 55, 243–75.Google Scholar
Brenchley, P. J. & Newall, G. 1980. A facies analysis of upper Ordovician regressive sequences in the Oslo Region, Norway – a record of glacio-eustatic changes. Palaeogeography Palaeoclimatology Palaeoecology 31, 138.Google Scholar
Brenchley, P. J., Newall, G. & Stanistreet, I. G. 1979. A storm surge origin for sandstone beds in an epicontinental platform sequence, Ordovician, Norway. Sedimentary Geology 22, 185217.Google Scholar
Bruton, D. L., Gabrielsen, R. H. & Larsen, B. T. 2010. The Caledonides of the Oslo Region, Norway – stratigraphy and structural elements. Norwegian Journal of Geology 90, 93121.Google Scholar
Candela, Y. & Hansen, T. 2010. Brachiopod associations from the Middle Ordovician of the Oslo Region, Norway. Palaeontology 53, 833–67.CrossRefGoogle Scholar
Christoffel, C. A., Connelly, J. N. & Åhäll, K. I. 1999. Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg–Halmstad region of SW Sweden. Precambrian Research 98, 173–95.Google Scholar
Cocks, L. R. M. 1982. The commoner brachiopods of the latest Ordovician of the Oslo–Asker District, Norway. Palaeontology 25, 755–81.Google Scholar
Corfu, F. & Dahlgren, S. 2008. Perovskite U–Pb ages and the Pb isotopic composition of alkaline volcanism initiating the Permo–Carboniferous Oslo Rift. Earth and Planetary Science Letters 265, 256–69.Google Scholar
Corfu, F., Roberts, R. J., Torsvik, T. H., Ashwal, L. D. & Ramsay, D. M. 2007. Peri-Gondwanan elements in the Caledonian Nappes of Finnmark, Northern Norway: implications for the paleogeographic framework of the Scandinavian Caledonides. American Journal of Science 307, 434–58.Google Scholar
Coward, M. P., Dewey, J., Hempton, M. & Holroyd, J. 2003. Tectonic evolution. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Evans, D., Graham, C., Armour, A. & Bathurst, P.), pp. 2-119. Geological Society of London.Google Scholar
Dahlgren, S. & Corfu, F. 2001. Northward sediment transport from the late Carboniferous Variscan Mountains: zircon evidence from the Oslo Rift, Norway. Journal of the Geological Society, London 158, 2936.Google Scholar
Davies, N. S., Turner, P. & Sansom, I. J. 2005 a. A revised stratigraphy for the Ringerike Group (Upper Silurian, Oslo Region). Norwegian Journal of Geology 85, 193202.Google Scholar
Davies, N. S., Turner, P. & Sansom, I. J. 2005 b. Caledonide influences on the Old Red Sandstone fluvial systems of the Oslo Region, Norway. Geological Journal 40, 83101.CrossRefGoogle Scholar
Dickinson, W. R., Lawton, T. F. & Gehrels, G. E. 2009. Recycling detrital zircon: a case study from the Cretaceous Bisbee Group of southern Arizona. Geology 37, 503–6.Google Scholar
Elburg, M. A., Andersen, T., Bons, P. D., Simonsen, S. L. & Weisheit, A. 2013. New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia. Gondwana Research 24, 700–12.Google Scholar
Faure, M., Cocherie, A., Mézème, E. B., Charles, N. & Rossi, P. 2010. Middle Carboniferous crustal melting in the Variscan Belt: New insights from U–Th–Pbtot. monazite and U–Pb zircon ages of the Montagne Noire Axial Zone (southern French Massif Central). Gondwana Research 18, 653–73.CrossRefGoogle Scholar
Gaál, G. & Gorbatchev, R. 1987. An outline of the Precambrian evolution of the Baltic Shield. Precambrian Research 35, 1552.Google Scholar
Gee, D. G., Fossen, H., Henriksen, N. & Higgins, A. K. 2008. From the early Paleozoic platforms of Baltica and Laurentia to the caledonide orogen of Scandinavia and Greenland. Episodes 31, 4451.Google Scholar
Gee, D. G., Pease, V., Larionov, A. & Dovshikova, L. 2000. New, single zircon (Pb–evaporation) ages from Vendian Intrusions in the basement beneath the Pechora Basin, northeastern Baltica. Polarforschung 68, 161–70.Google Scholar
Gorbatschev, R. 2004. The Transscandinavian Igneous Belt – introduction and background. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution (eds Högdahl, K., Andersson, U. B. & Eklund, O.), pp. 915. Geological Survey of Finland, Special Paper 37.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O’Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM–MC–ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.Google Scholar
Hansen, T. 2008. Mid to late Ordovician trilobite palaeoecology in a mud-dominated epicontinental sea, southern Norway. In Advances in Trilobite Research (eds Rábano, I., Gozalo, R. & García-Bellido, D.), pp. 157–65. Instituto Geológico de España, Madrid. Cuardernos del Museo Geomiero no. 9.Google Scholar
Hansen, T. 2009. Trilobites of the middle Ordovician Elnes Formation of the Oslo Region, Norway. Fossils and Strata 56, 1215.Google Scholar
Hawkesworth, C. J. & Kemp, A. I. S. 2006. Using hafnium and oxygen isotopes in zircon to unravel the record of crustal evolution. Chemical Geology 226, 144–62.Google Scholar
Heilimo, E., Halla, J., Andersen, T. & Huhma, H. 2013. Neoarchean crustal recycling and mantle metasomatism: Hf–Nd–Pb–O isotope evidence from sanukitoids of the Fennoscandian shield. Precambrian Research 228, 250–66.Google Scholar
Heinonen, A. P., Andersen, T. & Rämö, O. T. 2010. Re-evaluation of Rapakivi petrogenesis: source constraints from the Hf isotope composition of zircon in the Rapakivi Granites and associated mafic rocks of Southern Finland. Journal of Petrology 51, 1687–709.Google Scholar
Henningsmoen, G. 1978. Sedimentary rocks associated with the Oslo Region lavas. In The Oslo Paleorift: A Review and Guide to Excursions (eds Dons, J. A. & Larsen, B. T.), pp. 1724. Universitetsforlaget, Trondheim, Norges Geologiske Undersøkelse Bulletin 337.Google Scholar
Högdahl, K., Andersson, U. B. & Eklund, O. eds. 2004. The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution. Geological Survey of Finland, Special Paper 37, 125 pp.Google Scholar
Jackson, S. E., Pearson, N. J., Griffin, W. L. & Belousova, E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 4769.Google Scholar
Kirkland, C. L., Daly, J. S. & Whitehouse, M. J. 2008. Basement-cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on Neoproterozoic terrane assembly in the North Atlantic region. Precambrian Research 160, 245–76.CrossRefGoogle Scholar
Košler, J., Aftalion, M. & Bowes, D. R. 1993. Mid–late Devonian plutonic activity in the Bohemian Massif – U–Pb zircon isotopic evidence from the Stare Sedlo and Miotice gneiss complexes, Czech Republic. Neues Jahrbuch für Mineralogie-Monatshefte 9, 417–31.Google Scholar
Kurhila, M., Andersen, T. & Rämö, O. T. 2010. Diverse sources of crustal granitic magma: Lu–Hf isotope data on zircon in three Paleoproterozoic leucogranites of southern Finland. Lithos 115, 263–71.Google Scholar
Lamminen, J. & Köykkä, J. 2010. The provenance and evolution of the Rjukan Rift Basin, Telemark, south Norway: The shift from a rift basin to an epicontinental sea along a Mesoproterozoic supercontinent. Precambrian Research 181, 129–49.Google Scholar
Larionov, A. N., Andreichev, V. A. & Gee, D. G. 2004. The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In The Neoproterozoic Timanide Orogen of Eastern Baltica (eds Gee, D. G. & Pease, V.), pp. 6974. Geological Society, London, Memoirs 30.Google Scholar
Larsen, B. T., Olaussen, S., Sundvoll, B. & Heeremans, M. 2008. The Permo–Carboniferous Oslo Rift through six stages and 65 million years. Episodes 31, 5258.Google Scholar
Larson, S. Å. & Berglund, J. 1992. A chronological subdivision of the Transscandinavian Igneous Belt – three magmatic episodes? GFF 114, 459–61.Google Scholar
Lauri, L. S., Andersen, T., Hölttä, P., Huhma, H. & Graham, S. 2011. Evolution of the Archaean Karelian Province in the Fennoscandian Shield in the light of U–Pb zircon ages and Sm–Nd and Lu–Hf isotope systematics. Journal of the Geological Society, London 168, 201–18.Google Scholar
Lauri, L. S., Andersen, T., Räsänen, J. & Joupperi, H. 2012. Temporal and Hf isotope geochemical evolution of southern Finnish Lapland from 2.77 Ga to 1.76 Ga. Bulletin of the Geological Society of Finland 84, 121–40.Google Scholar
Martínez, F. J. & Rolet, J. 1988. Late Palaeozoic metamorphism in the northwestern Iberian Peninsula, Brittany and related areas in SW Europe. In The Caledonian–Appalachian Orogen (eds Harris, A. L. & Fettes, D. J.), pp. 611–20. Geological Society of London, Special Publication No. 38.Google Scholar
Miller, E. L., Kuznetsov, N., Soboleva, A., Udorantina, O., Grove, M. J. & Gehrels, G. 2011. Baltica in the Cordillera? Geology 39, 791–94.CrossRefGoogle Scholar
Morton, A., Fanning, M. & Milner, P. 2008. Provenance characteristics of Scandinavian basement terrains: constraints from detrital zircon ages in modern river sediments. Sedimentary Geology 210, 6185.Google Scholar
Olaussen, S. 1981. Marine incursion in Upper Palaeozoic sedimentary rocks of the Oslo Region, Southern Norway. Geological Magazine 118, 281–8.Google Scholar
Olaussen, S., Larsen, B. T. & Steel, R. 1994. The Upper Carboniferous–Permian Oslo Rift; Basin fill in relation to tectonic development. In Pangea: Global Environments and Resources (eds Embry, A. F., Beauchamp, B. & Glass, D. J.), pp. 175–97. Canadian Society of Petroleum Geologists, Memoir 17.Google Scholar
Owen, A. W. 1981. The Ashgill trilobites of the Oslo Region, Norway. Palaeontographica Abteilung A Palaeozoologie-Stratigraphie 175, 188.Google Scholar
Owen, A. W. 1982. The trilobite Mucronaspis in the uppermost Ordovician of the Oslo Region, Norway. Norsk Geologisk Tidsskrift 61, 271–9.Google Scholar
Owen, A. W., Bruton, D. L., Bockelie, J. F. & Bockelie, T. G. 1990. The Ordovician Successions of the Oslo Region, Norway. Norges Geologiske Undersøkelse, Trondheim, Special Publication 4, 354.Google Scholar
Patchett, P. J., Kouvo, O., Hedge, C. E. & Tatsumoto, M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology 78, 279–97.CrossRefGoogle Scholar
Pedersen, S., Andersen, T., Konnerup-Madsen, J. & Griffin, W. L. 2009. Recurrent mesoproterozoic continental magmatism in South-Central Norway. International Journal of Earth Sciences 98, 1151–71.Google Scholar
Roberts, N. M. W., Slagstad, T., Parrish, R. R., Norry, M. J., Marker, M. & Horstwood, M. S. A. 2012. Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway. Contributions to Mineralogy and Petrology 165, 507–23.Google Scholar
Rosa, D. R. N., Finch, A. A., Andersen, T. & Inverno, C. M. C. 2009. U–Pb geochronology and Hf isotope ratios of magmatic zircon from the Iberian Pyrite Belt. Mineralogy and Petrology 95, 4769.Google Scholar
Schaltegger, U. & Corfu, F. 1992. The age and source of late Hercynian magmatism in the central Alps: evidence from precise U–Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology 111, 329–44.Google Scholar
Siebel, W. & Chen, F. 2009. Zircon Hf isotope perspective on the origin of granitic rocks from eastern Bavaria, SW Bohemian Massif. International Journal of Earth Sciences 99, 9931005.Google Scholar
Sircombe, K. N. & Stern, R. A. 2002. An investigation of artificial biasing in detrital zircon U–Pb geochronology due to magnetic separation in sample preparation. Geochimica et Cosmochimica Acta 66, 2379–97.CrossRefGoogle Scholar
Söderlund, U., Möller, C., Andersson, J., Johansson, L. & Whitehouse, M. 2002. Zircon geochronology in polymetamorphic gneisses in the Sveconorwegian orogen, SW Sweden: ion microprobe evidence for 1.46–1.42 and 0.98–0.96 Ga reworking. Precambrian Research 113, 193225.Google Scholar
Söderlund, U., Patchett, J. P., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Størmer, L. 1967. Some aspects of the Caledonian geosyncline and foreland west of the Baltic Shield. Quarterly Journal of the Geological Society of London 123, 183214.Google Scholar
Thomas, W. A., Becker, T. P., Samson, S. D. & Hamilton, M. A. 2004. Detrital zircon evidence of a recycled orogenic foreland provenance for Alleghanian clastic-wedge sandstones. The Journal of Geology 112, 2337.Google Scholar
Turner, P. 1974. Lithostratigraphy and facies analysis of the Ringerike Group of the Oslo Region. Norges Geologiske Undersøkelse 314, 101–32.Google Scholar
Turner, P. & Whitaker, J. H. M. 1976. Petrology and provenance of late Silurian fluviatile sandstones from the Ringerike Group of Norway. Sedimentary Geology 16, 4668.CrossRefGoogle Scholar
Veevers, J. J., Belousova, E. A., Saeed, A., Sircombe, K., Cooper, A. F. & Read, S. E. 2006. Pan-Gondwanaland detrital zircon from Australia analysed for Hf-isotopes and trace elements reflect an ice-covered Antarctic provenance of 700–500 Ma age, TDM of 2.0–1.0 Ga, and alkaline affinity. Earth-Science Reviews 76, 135–74.Google Scholar
Veevers, J. J. & Saeed, A. 2007. Central Antarctic provenance of Permian sandstones in Dronning Maud Land and the Karoo Basin: Integration of U–Pb and TDM ages and host-rock affinity from detrital zircon. Sedimentary Geology 202, 653–76.Google Scholar
Veevers, J. J., Saeed, A., Belousova, E. A. & Griffin, W. L. 2005. U–Pb ages and source composition by Hf-isotope and trace-element analysis of detrital zircon in Permian sandstone and modern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn Craton. Earth-Science Reviews 68, 245–79.Google Scholar
Vervoort, J. D. & Patchett, P. J. 1996. Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites. Geochimica et Cosmochimica Acta 60, 3717–33.Google Scholar
Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 212 pp.Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Speigel, W. 1995. 3 natural zircon standars for the U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Williams, I. S. 2001. Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48, 557–80.CrossRefGoogle Scholar
Willner, A. P., Sindern, S., Metzger, R., Ermolaeva, T., Kramm, U., Puchkov, V. & Kronz, A. 2003. Typology and single grain U/Pb ages of detrital zircons from Proterozoic sandstones in the SW Urals (Russia): early time marks at the eastern margin of Baltica. Precambrian Research 124, 120.Google Scholar
Worsley, D., Aarhus, N., Bassett, M. G., Howe, M. P. A., Mørk, A. & Olaussen, S. 1983. The Silurian succession of the Oslo Region. Norges Geologiske Undersøkelse 384, 157.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–52.Google Scholar
Ziegler, P. A., Schumacher, M. E., Dezès, P., Van Wees, J.-D. & Cloetingh, S. 2004. Post-Variscan evolution of the lithosphere in the Rhine Graben area: constraints from subsidence modelling. In Permo-Carboniferous Magmatism and Rifting in Europe (eds Wilson, M., Neumann, E.-R., Davies, G. R., Timmerman, M. J., Heeremans, M. & Larsen, B. T.), pp. 289317. Geological Society of London, Special Publication no. 223.Google Scholar
Supplementary material: File

Kristoffersen et al. Supplementary Material

Table S1

Download Kristoffersen et al. Supplementary Material(File)
File 395.3 KB
Supplementary material: File

Kristoffersen et al. Supplementary Material

Table S2

Download Kristoffersen et al. Supplementary Material(File)
File 300 KB