Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T19:01:26.543Z Has data issue: false hasContentIssue false

Reactivation history of the long-lived Billefjorden Fault Zone in north central Spitsbergen, Svalbard

Published online by Cambridge University Press:  01 May 2009

Andrew J. McCann
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
Winfried K. Dallmann
Affiliation:
Norsk Polarinstitutt, Middelthuns gate 29, Postboks 5072 Majorstua, N-0301 Oslo, Norway

Abstract

New geological mapping has revealed further details of the tectonic and stratigraphic effects of Devonian and later reactivations of the Billefjorden Fault Zone, one of a number of important north—south trending lineaments in Svalbard. Analysis of offsets along the many steeply-dipping faults within the zone, and effects on the subsidence and deformation of the adjacent crustal blocks, is presented as a series of tectonic maps from the Late Devonian through to the Tertiary. Late Devonian sinistral transpression, suggested previously, cannot be ruled out, and Carboniferous reactivation was dominated by extension, with possibly a slight dextral strike-slip component. After Late Carboniferous to Early Cretaceous platform subsidence, during which the fault zone had little effect on sedimentation, development of the Tertiary West Spitsbergen Fold Belt (related to the opening of the Arctic Ocean) involved compressive (and transpressive?) reactivation of basement-seated structures further east, including the Billefjorden Fault Zone. In the Billefjorden—Austfjorden area this produced a large monoclinal fold across the fault zone, which was later cross-cut by extensional structures to produce the present day Billefjorden syncline. This localized late extension is related to a slight variation in the trend of the Billefjorden Fault Zone through this area.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andresen, A., Haremo, P., Swensson, E., & Bergh, S. G. 1992. Structural geology around the southern termination of the Lomfjorden Fault Complex, Agardhdalen, east Spitsbergen. In Post-Caledonian Tectonic Evolution of Svalbard (eds Dallmann, W. K., Andresen, A., and Krill, A.), pp. 8392. Norsk Geologisk Ttdsskrifl 72.Google Scholar
Bergh, S. G., & Andresen, A. 1990. Structural development of the Tertiary fold-and-thrust belt in Oscar II Land, Spitsbergen. Polar Research 8, 217–36.CrossRefGoogle Scholar
Cutbill, J. L., & Challinor, A. 1965. Revision of the strati-graphical scheme for the Carboniferous and Permian rocks of Spitsbergen and Bjørnøya. Geological Magazine 102, 418–39.CrossRefGoogle Scholar
Cutbill, J. L., Henderson, W. G., & Wright, N. J. R., 1976. The Billefjorden Group (Early Carboniferous) of Central Spitsbergen. In Some coal-bearing strata in Svalbard (eds Harland, W. B., Pickton, C. A. G., Wright, N. J. R., Croxton, C. R., Smith, D. G., Cutbill, J. L., and Henderson, W. G.), pp. 5789. Norsk Polarinstitutt Skhfter 164.Google Scholar
Dallmann, W. K. 1989. The nature of the Precambrian-Tertiary boundary at Renardodden, Bellsund, Svalbard. Polar Research 7, 139–45.CrossRefGoogle Scholar
Dallmann, W. K. 1992. Multiphase tectonic evolution of the Sørkapp-Hornsund mobile zone (Devonian, Carboniferous, Tertiary), Svalbard. In Post-Caledonian Tectonic Evolution of Svalbard (eds Dallmann, W. K., Andresen, A., and Krill, A.), pp. 4966. Norsk Geologisk Tidsskrift 72.Google Scholar
Dallmann, W. K. 1993. Notes on the stratigraphy, extent and tectonic implications of the Minkinfjellet Basin, Middle Carboniferous of central Spitsbergen. Polar Research 12, 153–60.CrossRefGoogle Scholar
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher, H. D. Jr, & Ohta, Y. 1993. Tertiary fold-and-thrust belt of Spitsbergen, Svalbard. Norsk Polarinstitutt Meddelelser no. 128.Google Scholar
Dallmann, W. K., & Maher, H. D. 1989. The Supanberget area — basement imbrication and detached foreland thrusting in the Tertiary fold-and-thrust belt, Svalbard. Polar Research 7, 95108.Google Scholar
Dallmann, W. K., Ohta, Y., Birjukov, A. S., Karnoušenko, E. P., & Sirotkin, A. N. 1994. Geological map of Svalbard 1:100,000, digital edition, sheet C7G Dicksonfjorden. Norsk Polarinstitutt.Google Scholar
Eiken, O. 1985. Seismic mapping of the post-Caledonian strata in Svalbard. Polar Research 3, 167–76.Google Scholar
Friend, P. F. 1961. The Devonian stratigraphy of north and central Vestspitsbergen. Proceedings of the Yorkshire Geological Society 33, 77118.CrossRefGoogle Scholar
Friend, P. F., Heintz, N., & Moody-Stuart, M. 1966. New unit terms for the Devonian of Spitsbergen and a new strati-graphical scheme for the Wood Bay Formation. Norsk Polarinstitutt Årbok 1965, 5964.Google Scholar
Friend, P. F., & Moody-Stuart, M. 1972. Sedimentation of the Wood Bay Formation (Devonian) of Spitsbergen: regional analysis of a late orogenic basin. Norsk Polarinstitutt Skrifter 157, 177.Google Scholar
Gabrielsen, R. H. 1984. Long-lived fault zones and their influence on the tectonic development of the southwestern Barents Sea. Journal of the Geological Society of London 141, 651–62.CrossRefGoogle Scholar
Gillchrist, R., Coward, M., & Mugnier, J-L. 1987. Structural inversion and its controls: examples from the Alpine foreland and the French Alps. Geodinamica Acta 1, 534.CrossRefGoogle Scholar
Gielberg, J. G., & Steel, R. J. 1981. An outline of Lower—Middle Carboniferous sedimentation on Svalbard: effects of tectonic, climatic and sea level changes in rift basin sequences. In Geology of the North Atlantic Borderlands (eds Kerr, J. W., Fergusson, A. J., and Machan, L. C.), pp. 543–62. Memoirs of the Canadian Society of Petroleum Geologists 7.Google Scholar
Hanisch, J. 1984. West Spitsbergen fold belt and Cretaceous opening of the northeast Atlantic. In Petroleum Geology of the North European Margin (eds Spencer, A. M., Holter, E., Johnsen, S. O., Mørk, A., Nysanher, E., Songstad, P., and Spinnangr, A.), pp. 187–98. Oslo/London: Norwegian Petroleum Society/Graham & Trotman.CrossRefGoogle Scholar
Haremo, P., & Andresen, A. 1992. Tertiary décollement thrusting and inversion along Billefjorden and Lomfjorden Fault Zones, east central Spitsbergen. In Structural and Tectonic Modelling and its Application to Petroleum Geology (eds Larsen, R. M., Brekke, H., Larsen, B. T., and Talleraas, E.), pp. 481–94. Norwegian Petroleum Society Special Publication no. 1. Amsterdam: Elsevier.CrossRefGoogle Scholar
Haremo, P., Andresen, A., & Dypvik, H. 1993. Mesozoic extension versus Tertiary compression along the Billefjorden Fault Zone south of Isfjorden, central Spitsbergen. Geological Magazine 130, 783–95.CrossRefGoogle Scholar
Haremo, P., Andresen, A., Dypvik, H., Nagy, J., Elverhøi, A., Eikeland, T. A., & Johansen, H. 1990. Structural development along the Billefjorden Fault Zone in the area between Kjellstromdalen and Adventdalen/Sassendalen, central Spitsbergen. Polar Research 8, 195216.Google Scholar
Harland, W. B. 1941. Geological notes on the Stubendorff Mountains, West Spitsbergen. Proceedings of the Royal Society of EdinburghB 51, 119–29.Google Scholar
Harland, W. B. 1969. Contribution of Spitsbergen to understanding of tectonic evolution of North Atlantic region. In North Atlantic Geology and Continental Drift (ed. Kay, M.), pp. 817–51. American Association of Petroleum Geologists Memoir no. 12.Google Scholar
Harland, W. B., Cutbill, J. L., Friend, P. F., Gobbett, D. J., Holliday, D. W., Maton, P. I., Parker, J. R., & Wallis, R. H. 1974. The Billefjorden Fault Zone, Spitsbergen: the long history of a major tectonic lineament. Norsk Polarinstitutt Skrifter 161, 172.Google Scholar
Harland, W. B., & Horsfield, W. T. 1974. West Spitsbergen Orogen. In Mesozoic—Cenozoic Orogenic Belts; Data for Orogenic Studies (ed. Spencer, A. M.), pp. 747–55. Geological Society of London Special Publication no. 4.Google Scholar
Harland, W. B., Mann, A., & Townsend, C. 1988. Deformation of anhydrite-gypsum rocks in central Spitsbergen. Geological Magazine 125, 103–16.CrossRefGoogle Scholar
Harland, W. B., Scott, R. A., Auckland, K. A., & Snape, I. 1992. The Ny Friesland Orogen, Spitsbergen. Geological Magazine 129, 679708.CrossRefGoogle Scholar
Harland, W. B., Wallis, R. H., & Gayer, R. A. 1966. A revision of the lower Hecla Hoek succession in central north Spitsbergen and correlation elsewhere. Geological Magazine 103, 7097.CrossRefGoogle Scholar
Holliday, D. W., & Cutbill, J. L. 1972. The Ebbadalen Formation (Carboniferous), Spitsbergen. Proceedings of the Yorkshire Geological Society 39, 132.CrossRefGoogle Scholar
Johannessen, E. P., & Steel, R. J. 1992. Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard. In Post-Caledonian Tectonic Evolution of Svalbard (eds Dallmann, W. K., Andresen, A., and Krill, A.), pp. 3548. Norsk Geologisk Tidsskrift 72.Google Scholar
Krasil’;ščikov, A. A. 1973. Stratrgrafija i paleotektonika dokembrija — rannego paleozoja Špicbergena [Stratigraphy and paleotectonics of the Precambrian—Early Paleozoic of Spitsbergen]. Trudy Naučno-lssledovatel’;skogo Institut Geologii Arktiki 172, 1120.Google Scholar
Lamar, D. L., Reed, W. E., & Douglass, D. N. 1986. The Billefjorden fault zone, Spitsbergen: is it part of a major Late Devonian transform? Bulletin of the Geological Society of America 91, 1083–8.2.0.CO;2>CrossRefGoogle Scholar
Lamar, D. L., Reed, W. E., & Douglass, D. N. in press. The geology of an area astride the Billefjorden Fault Zone, Northern Dickson Land, Spitsbergen, Svalbard. Norsk Polarinstitutt Skrifter.Google Scholar
Lowell, J. D. 1972. Spitsbergen Tertiary orogenic belt and the Spitsbergen Fracture Zone. Geological Society of America Bulletin 83, 3091–102.CrossRefGoogle Scholar
Lyberis, N., & Manby, G. 1993 a. The West Spitsbergen Fold Belt: the result of Late Cretaceous—Palaeocene Greenland—Svalbard convergence? Geological Journal 28, 125–36.CrossRefGoogle Scholar
Lyberis, N., & Manby, G. 1993 b. The origin of the West Spitsbergen Fold Belt from geological constraints and plate kinematics: implications for the Arctic. Tectonophysics 224, 371–91.CrossRefGoogle Scholar
Lønøy, A., 1995. A Mid-Carboniferous, carbonate-dominated platform, Central Spitsbergen. Norsk Geologisk Tidsskrift 75, 48–63.Google Scholar
Maher, H. D., & Craddock, C. 1988. Decoupling as an alternate model for transpression during the initial opening of the Norwegian Greenland Sea. Research Note. Polar Research 6, 137–40.CrossRefGoogle Scholar
Maher, H. D., Craddock, H. D., & Maher, K. A. 1986. Kinematics of Tertiary structures in Upper Paleozoic and Mesozoic strata on Midterhuken, West Spitsbergen. Geological Society of America Bulletin 97, 1411–21.2.0.CO;2>CrossRefGoogle Scholar
Manby, G. M., Lyberis, N., Chorowicz, J., & Thiedig, F. 1994. Post-Caledonian tectonics along the Billefjorden fault zone, Svalbard, and implications for the Arctic region. Geological Society of America Bulletin 106, 201–16.2.3.CO;2>CrossRefGoogle Scholar
Mcwhae, J. R. H. 1953. The major fault zone of Central Vestspitsbergen. Quarterly Journal of the Geological Society 108, 209–32.CrossRefGoogle Scholar
Miloslavskij, M. Ju., Dallmann, W. K., Dypvik, H., Krasil’;ščikov, A. A., Birkeland, Ø., & Salvigsen, O. 1993. Geological map of Svalbard 1:100,000, sheet D9G Agardhfjellet. Norsk Polarinstitutt Temakart no. 21.Google Scholar
Murašov, L. G., & Mokin, Ju. I. 1976. Stratigrafičeskoe razde-lenie devonskich otloženy o. Špicbergen [Stratigraphic subdivision of the Devonian deposits of the island of Spitsbergen]. In Geologija Svalbarda (ed. Sokolov, V. N.), pp. 7891. Naučno-Issledovatel’;skij Institut Geologii Arktiki, Leningrad.Google Scholar
Murašcov, L. G., & Mokin, Ju. I. 1979. Stratigraphic subdivision of the Devonian deposits of Spitsbergen. Norsk Polarinstitutt Skrifter 167, 249–61. [Author’;s name misspelt in publication: should read ‘Murasov’.]Google Scholar
Nøttvedt, A., Livbjerg, F., & Midbøe, P. S. 1988. Tertiary deformation on Svalbard — various models and recent advances. In Tertiary Tectonics of Svalbard (eds Dallmann, W. K., Ohta, Y., and Andresen, A.), pp. 7984. Norsk Polarinstitutt, Rapport Series no. 46 (extended abstract from symposium, 26–27 April 1988, Oslo).Google Scholar
Parker, J. R. 1967. The Jurassic and Cretaceous sequence in Spitsbergen. Geological Magazine 104, 487505.CrossRefGoogle Scholar
Pickard, N. A. H., Eilertsen, F., Hanken, N.-M., Samuelsberg, T. J., Johansen, A., Lønøy, A., Nakrem, H. A., Nilsson, I., & Somerville, I. D., in press. Stratigraphic frame work of Upper Carboniferous (Moscovian—Kasimovian) strata in Bünsow Land, central Spitsbergen: palaeogeographic implications. Norsk Geologisk Tidsskrift.Google Scholar
Playford, G. 1962. Lower Carboniferous microfloras of Spitsbergen. Part I. Palaeontology 5, 550618.Google Scholar
Playford, G. 1963. Lower Carboniferous microfloras of Spitsbergen. Part II. Palaeontology 5, 619–78.Google Scholar
Skilbrei, J. R. 1992. Preliminary interpretation of aeromagnetic data from Spitsbergen, Svalbard Archipelago (76–79N): Implications for structure of the basement. Marine Geology 106, 5368.CrossRefGoogle Scholar
Steel, R. J., & Worsley, D. 1984. Svalbard’;s post-Caledonian strata: an atlas of sedimentational patterns and palaeogeographic evolution. In Petroleum Geology of the North European Margin (eds Spencer, A. M., Holter, E., Johnsen, S. O., Mørk, A., Nysxther, E., Songstad, P., and Spinnangr, Å.), pp. 109–35. Oslo/London: Norwegian Petroleum Society/Graham & Trotman.CrossRefGoogle Scholar
Talwani, M., & Eldholm, O. 1977. Evolution of the Norwegian—Greenland Sea. Geological Society of America Bulletin 88, 969–99.2.0.CO;2>CrossRefGoogle Scholar
Vogt, T. 1928. Den norske fjellkjedes revolusjonshistorie. Norsk Geologisk Tidsskrift 10, 97115.Google Scholar
Vogt, T. 1941. Geology of a Middle Devonian cannel coal from Spitsbergen. Norsk Geologisk Tidsskrift 21, 112.Google Scholar