Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T13:20:06.289Z Has data issue: false hasContentIssue false

New insights into the polyphase evolution of the Variscan suture zone: evidence from the Staré Město Belt, NE Bohemian Massif

Published online by Cambridge University Press:  28 February 2012

MIROSŁAW JASTRZĘBSKI*
Affiliation:
Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Wrocław, Podwale St. 75, PL-50449 Wrocław, Poland
*

Abstract

Forming a northern continuation of the Moldanubian Thrust Zone, the Staré Město Belt comprises an E-verging thrust stack of three narrow lithotectonic units that exhibit variations in their respective P–T records. The upper and lower units form the respective margins of the hanging wall and footwall of the suture zone and are dominated by amphibolite grade metasedimentary successions. The middle unit is defined by an elongated body of MORB-like amphibolites that contains inserts of migmatized mica schists. Integrating both structural studies and pseudosection modelling in the MnNCKFMASH system shows that the present-day tectonic architecture of the Staré Město Belt is the result of a polyphase Variscan evolution. During a frontal, WNW–ESE-directed (in present-day coordinates) collision between the Bohemian Massif terranes and the Brunovistulian terrane, the metasedimentary rocks of the Staré Město Belt experienced tectonic burial to depths corresponding to 7–9 kbar. The continuous indentation and underthrusting of the Brunovistulian terrane led to top-to-the-ESE folding and uplift of these rocks to depths corresponding to 5.5–6.0 kbar at peak temperature. At depths corresponding to 5.5 kbar, the Staré Město Belt underwent subsequent dextral (top-to-the-NNE) shearing that was locally associated with nearly isobaric heating, possibly related to the emplacement of a Carboniferous tonalite body in the axial part of the Staré Město Belt. Subsequent tectonic compression resulted in the Variscan WNW-dipping metamorphic foliations becoming locally (N)NE- or ESE-dipping.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aleksandrowski, P. & Mazur, S. 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 237–77. Geological Society of London, Special Publication no. 201.Google Scholar
Bakun-Czubarow, N. 1992. Quartz pseudomorphs after coesite and quartz exsolutions in eclogitic clinopyroxenes of the Złote Mountains in the Sudetes (SW Poland). Archiwum Mineralogiczne 48, 325.Google Scholar
Bartz, W. 2004. Metamorphic evolution of the amphibolites from the polish part of Stare Mĕsto Zone (Sudetes, SW Poland). Mineralogia Polonica 35, 574.Google Scholar
Cháb, J., Mixa, P, Vaněček, M. & Žaček, V. 1994. Evidence of an extensional tectonics in the NW of the Hrubý Jeseník Mts. (the Bohemian massif, Central Europe). Věstnik Českého geologického ústavu 69, 715.Google Scholar
Coggon, R. & Holland, T. J. B. 2002. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. Journal of Metamorphic Geology 20, 683–96.CrossRefGoogle Scholar
Don, J. 1982. The Sienna Synform and the relationship of gneisses to the deformational stages distinguished in the Śnieżnik Metamorphic Massif (Sudetes). Geologia Sudetica 17, 103–24.Google Scholar
Don, J., Dumicz, M., Wojciechowska, I. & Żelaźniewicz, A. 1990. Lithology and tectonics of the Orlica–Śnieżnik Dome, Sudetes – Recent State of Knowledge. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 197, 159–88.Google Scholar
Don, J., Skácel, J. & Gotowała, R. 2003. The boundary zone of the East and West Sudetes on the 1:50000 scale geological map of the Velké Vrbno, Staré Město and Śnieżnik Metamorphic Units. Geologia Sudetica 35, 2559.Google Scholar
Dumicz, M. 1979. Tectogenesis of the metamorphosed series of the Kłodzko District: a tentative explanation. Geologia Sudetica 14, 2946.Google Scholar
Dutch, R. A., Hand, M. & Kelsey, D. E. 2010. Unravelling the tectonothermal evolution of reworked Archaean granulite-facies metapelites using in situ geochronology, an example from the Gawler Craton, Australia. Journal of Metamorphic Geology 28, 293316.Google Scholar
Finger, F., Gerdes, A., Janoušek, V., René, M. & Riegler, G. 2007. Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and Moravo-Moldanubian tectonometamorphic phases. Journal of Geosciences 52, 928.Google Scholar
Finger, F., Hanzl, P., Pin, C., von Quadt, A. & Steyrer, H. P. 2000. The Brunovistulian: Avalonian Precambrian at the eastern end of the Central European Variscides? In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 103–12. Geological Society of London, Special Publication no. 179.Google Scholar
Floyd, P. A., Winchester, J., Ciesielczuk, J., Lewandowska, A., Szczepański, J. & Turniak, K. 1996. Geochemistry of early Palaeozoic amphibolites from the Orlica-Śnieżnik dome, Bohemian massif: petrogenesis and palaeotectonic aspects. Geologishe Rundschau 85, 225–38.Google Scholar
Franke, W. & Żelaźniewicz, A. 2000. The eastern termination of the Variscides: terrane correlation and kinematic evolution. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 6386. Geological Society of London, Special Publication no. 179.Google Scholar
Franke, W. & Żelaźniewicz, A. 2002. Structure and evolution of the Bohemian Arc. In Palaeozoic Amalgamation of Central Europe (eds Winchester, J. A., Pharaoh, T. C. & Verniers, J.), pp. 279–93. Geological Society of London, Special Publication no. 201.Google Scholar
Friedl, G., Finger, F., McNaughton, N. J. & Fletcher, I. R. 2000. Deducing the ancestry of terranes: SHRIMP evidence for South America-derived Gondwana fragments in central Europe. Geology 28, 1035–8.2.0.CO;2>CrossRefGoogle Scholar
Höck, V., Montag, O. & Leichmann, J. 1997. Ophiolite remnants at the eastern margin of the Bohemian Massif and their bearing on the tectonic evolution. Mineralogy and Petrology 60, 267–87.Google Scholar
Holland, T. J. B., Baker, J. M. & Powell, R. 1998. Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy 10, 395406.CrossRefGoogle Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Holland, T. J. B. & Powell, R. 2003. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contributions to Mineralogy and Petrology 145, 492501.Google Scholar
Jastrzębski, M. 2009. A Variscan continental collision of the West Sudetes and the Brunovistulian terrane: a contribution from structural and metamorphic record of the Stronie Formation, the Orlica-Śnieżnik Dome, SW Poland. International Journal of Earth Sciences 98, 1901–23.Google Scholar
Jastrzębski, M., Żelaźniewicz, A., Nowak, I., Murtezi, M. & Larionov, A. N. 2010. Protolith age and provenance of metasedimentary rocks in Variscan allochthon units: U–Pb SHRIMP zircon data from the Orlica–Śnieżnik Dome, West Sudetes. Geological Magazine 147, 416–33.Google Scholar
Kalvoda, J., Bábek, O., Fatka, O., Leichmann, J., Melichar, R. & Špaček, P. 2008. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. International Journal of Earth Sciences 97, 497517.Google Scholar
Kasza, L. 1964 Budowa geologiczna górnego dorzecza Białej Lądeckiej. Geologia Sudetica 1, 119–67.Google Scholar
Klimas, K., Kryza, R. & Fanning, C. M. 2009. Palaeo- to Mesoproterozoic inheritance and Ediacaran anatexis recorded in gneisses at the NE margin of the Bohemian Massif: SHRIMP zircon data from the Nowolesie gneiss, Fore-Sudetic Block (SW Poland). Geologia Sudetica 41, 2542.Google Scholar
Košuličová, M. & Štípská, P. 2007. Variations in the transient prograde geothermal gradient from chloritoid-staurolite equilibria: a case study from the Barrovian and Buchan-type domains in the Bohemian Massif. Journal of Metamorphic Geology 25, 1936.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Kröner, A., Štípská, P., Schulmann, K. & Jaeckel, P. 2000. Chronological constraints on the pre-Variscan evolution of the northeastern margin of the Bohemian Massif, Czech Republic. In Orogenic Processes: Quantification and Modelling in the Variscan Belt (eds Franke, W., Haak, V., Oncken, O. & Tanner, D.), pp. 175–97. Geological Society of London, Special Publication no. 179.Google Scholar
Lexa, O., Štípská, P., Schulmann, K., Baratoux, L. & Kröner, A. 2005. Contrasting textural record of two distinct metamorphic events of similar P-T conditions and different durations. Journal of Metamorphic Geology 23, 649–66.Google Scholar
Linnemann, U., Pereira, F., Jeffries, T. E., Drost, K. & Gerdes, A. 2008. The Cadomian Orogeny and the opening of the Rheic Ocean: the diachrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461, 2143.CrossRefGoogle Scholar
Mahar, E. M., Baker, J. M., Powell, R., Holland, T. J. B. & Howell, N. 1997. The effect of Mn on mineral stability in metapelites. Journal of Metamorphic Geology 15, 223–38.CrossRefGoogle Scholar
Mazur, S., Aleksandrowski, P., Szczepański, J. 2005. The presumed Tepla-Barrandian/Moldanubian terrane boundary in the Orlica Mountains (Sudetes, Bohemian Massif): structural and petrological characteristics. Lithos 82, 85112.Google Scholar
Mazur, S., Kröner, A., Szczepański, J., Turniak, K., Hanzl, P., Melichar, R., Rodionov, N. V., Paderin, I. & Serggev, S. A. 2010. Single zircon U–Pb ages and geochemistry of granitoid gneisses from SW Poland: evidence for an Avalonian affinity of the Brunian microcontinent. Geological Magazine 147, 508–26.Google Scholar
Murtezi, M. 2006. The acid metavolcanic rocks of the Orlica–Śnieżnik Dome: their origin and tectono-metamorphic evolution. Geologia Sudetica 38, 138.Google Scholar
Oberc-Dziedzic, T., Klimas, K., Kryza, R. & Fanning, C. M. 2003. SHRIMP zircon geochronology of the Strzelin gneiss, SW Poland: evidence for a Neoproterozoic thermal event in the Fore-Sudetic Block, Central European Variscides. International Journal of Earth Sciences 92, 701–11.Google Scholar
Opletal, M., Jelinek, E., Pečina, V., Pošmourtný, K. & Poubová, E. 1990. Metavolcanites of the SE part of the Lugicum, their geochemistry and geotectonic interpretation. Sbornik Geologickych Ved, Geologie 45, 3764.Google Scholar
Parry, M., Štípská, P., Schulmann, K., Hrouda, F., Ježek, J. & Kröner, A. 1997. Tonalite sill emplacement at an oblique boundary: northeastern margin of the Bohemian Massif. Tectonophysics 280, 6181.CrossRefGoogle Scholar
Poubová, E. & Sokol, A. 1992. The petrology and geochemistry of the metaophiolitic rocks of Stare Mesto crystalline unit. Krystalinikum 21, 6788.Google Scholar
Racek, M., Štípská, P., Pitra, P., Schulmann, K. & Lexa, O. 2006. Metamorphic record of burial and exhumation of orogenic lower and middle crust: a new tectonothermal model for the Drosendorf window (Bohemian Massif, Austria). Mineralogy and Petrology 86, 221–51.Google Scholar
Sawicki, L. 1995. Geological Map of Lower Silesia with adjacent Czech and German Territories 1:100 000. Warszawa: Państwowy Instytut Geologiczny.Google Scholar
Schulmann, K. & Gayer, R. 2000. A model of an obliquely developed continental accretionary wedge: NE Bohemian Massif. Journal of the Geological Society, London 156, 401–16.Google Scholar
Schulmann, K., Kröner, A., Hegner, E., Wendt, I., Konopásek, J., Lexa, O. & Štípská, P. 2005. Chronological constraints on the pre-orogenic history, burial and exhumation of deep-seated rocks along the eastern margin of the Variscan orogen, Bohemian Massif, Czech Republic. American Journal of Science 305, 407–48.Google Scholar
Siivola, J. & Schmid, R. 2007. List of Mineral Abbreviations: Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version 01–02-07. IUGS Commission on the Systematics in Petrology.Google Scholar
Skácel, J. 1989. Hranice lugika a silezika (středních a východních Sudet). Prace Geologiczno-Mineralogiczne – Acta Universitatis Wratislaviensis 17, 4555.Google Scholar
Skrzypek, E., Schulmann, K., Štípská, P., Chopin, F., Lehmann, J., Lexa, O. & Haloda, J. 2011 a. Tectono-metamorphic history recorded in garnet porphyroblasts: insights from thermodynamic modelling and electron backscatter diffraction analysis of inclusion trails. Journal of Metamorphic Geology 29, 473–96.Google Scholar
Skrzypek, E., Štípská, P., Schulmann, K., Lexa, O. & Lexova, M. 2011 b. Prograde and retrograde metamorphic fabrics – a key for understanding burial and exhumation in orogen (Bohemian Massif). Journal of Metamorphic Geology 29, 451–72.Google Scholar
Štípská, P., Pitra, P. & Powell, R. 2006. Separate or shared metamorphic histories of eclogites and surrounding rocks? An example from the Bohemian Massif. Journal of Metamorphic Geology 24, 219–40.Google Scholar
Štípská, P., Schulmann, K. & Kröner, A. 2004. Vertical extrusion and middle crust spreading of omphacite granulite: a model of syn-convergent exhumation (Bohemian Massif, Czech Republic). Journal of Metamorphic Geology 22, 179–98.Google Scholar
Štípská, P., Schulmann, K., Thompson, A. B., Ježek, J. & Kröner, A. 2001. Thermo-mechanical role of a Cambro-Ordovician paleorift during the Variscan collision: the NE margin of the Bohemian Massif. Tectonophysics 332, 239–53.Google Scholar
Szczepański, J. 2010. Geological setting of the Bystrzyckie Mts Crystalline Massif. Mineralogia – Special Papers 37, 140–44.Google Scholar
Tait, J. A., Bachtadse, V., Franke, W. & Soffel, H. C. 1997. Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geologische Rundschau 86, 585–98.Google Scholar
Tajčmanová, L., Soejono, I., Konopásek, J., Košler, J. & Klötzli, U. 2010 Structural position of high-pressure felsic to intermediate granulites from NE Moldanubian domain (Bohemian Massif). Journal of Geological Society, London 167, 329–45.Google Scholar
Tinkham, D. K. & Ghent, E. D. 2005. Estimating P-T conditions of garnet growth with isochemical phase-diagram sections and the problem of effective bulk-composition. Canadian Mineralogist 43, 3550.Google Scholar
von Raumer, J. F., Stampfli, G. M. & Bussy, F. 2003. Gondwana-derived microcontinents – the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.Google Scholar
White, R. W., Pomroy, N. E. & Powell, R. 2005. An in-situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. Journal of Metamorphic Geology 23, 579602.Google Scholar
White, R. W., Powell, R. & Holland, T. J. B. 2007. Progress relating to calculation of partial melting equilibria for metapelites. Journal of Metamorphic Geology 25, 511–27.Google Scholar
Whitney, D. L. & Evans, B. W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7.Google Scholar
Zeh, A., Brätz, H., Millar, I. L. & Williams, I. S. 2001. A combined zircon SHRIMP and Sm–Nd isotope study of high-grade paragneisses from the Mid-German Crystalline Rise: evidence for northern Gondwana and Grenvillian provenance. Journal of the Geological Society, London 158, 983–94.Google Scholar
Żelaźniewicz, A., Buła, Z., Fanning, M., Seghedi, A. & Żaba, J. 2009. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geological Quarterly 53, 93124.Google Scholar
Żelaźniewicz, A., Nowak, I., Bachliński, R., Larionov, A. N. & Sergeev, S. A. 2005. Cadomian versus younger deformations in the basement of the Moravo-Silesian Variscides, East Sudetes, SW Poland: U-Pb SHRIMP and Rb-Sr age data. Geologia Sudetica 37, 3551.Google Scholar