Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T22:32:30.388Z Has data issue: false hasContentIssue false

Metamorphic evolution of the Karimnagar granulite terrane, Eastern Dharwar Craton, south India

Published online by Cambridge University Press:  14 June 2010

D. PRAKASH*
Affiliation:
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi-221005, India
I. N. SHARMA
Affiliation:
Centre of Advanced Study in Geology, Banaras Hindu University, Varanasi-221005, India
*
*Author for correspondence: dprakashbhu@yahoo.com

Abstract

The Karimnagar granulite terrane is an integral part of the Eastern Dharwar Craton (EDC), India, having been the subject of much interest because of the only reported granulite facies rocks in the EDC. It shows a large variety of rock types with a wide range of mineral parageneses and chemical compositions, namely charnockites (Opx+Pl+perthite+Qtz±Bt±Grt), gneisses (Opx+Crd+Bt+Pl+Qtz+perthite±Sil±Grt±Spl; Bt+Qtz+Pl±Crd±Hbl±Spl), mafic granulites (Cpx+Pl+Qtz±Opx±Hbl), quartz-free granulites (Spr+Spl+Bt+Crd+Kfs+Crn; Bt+Crd+Kfs±Crn±Spl±Krn; And+Bt+Kfs+Chl), granites (Qtz+Pl+Kfs±Bt±Hbl), altered ultramafic rocks (Chl+Trem+Tlc), metadolerites (Cpx+Pl±Bt±Qtz±Chl), banded magnetite quartzites and quartzites. Andalusite- and chlorite-bearing assemblages presumably suggest a retrograde origin. Investigation of quartz-free granulites of the area brings out some interesting and important observations, reflecting the presence of refractory phases. These granulites are devoid of sillimanite and contain corundum instead. Reaction textures in the gneisses include breakdown of garnet to form coronas and symplectites of orthopyroxene+cordierite, formation of cordierite from garnet+sillimanite+quartz and late retrograde biotite and biotite+quartz symplectites. In the mafic granulites, inclusions of quartz and hornblende within orthopyroxene are interpreted as being a part of the prograde assemblage. At a later stage orthopyroxene is also rimmed by hornblende. The quartz-free granulites display a variety of spectacular coronas, for example, successive rims on corundum consisting of spinel+sapphirine+cordierite±orthopyroxene, rare skeletal symplectitic intergrowth of sapphirine+cordierite+potash feldspar, and late retrograde formation of chlorite, corundum, spinel and andalusite from sapphirine±cordierite. Based on chemographic relationships and petrogenetic grids, a sequence of prograde, isothermal decompressive and retrograde reactions have been inferred. Quartz-free sapphirine granulites and mafic granulites record the highest P–T conditions (~7 kbar, 850°C), whereas the gneisses were formed at lower P–T conditions (~5 kbar, 800°C). In addition, the presence of andalusite-bearing rocks suggests a pressure of around 2.5 kbar. This change in pressure from 7 kbar to around 2.5 kbar suggests a decompressive path for the evolution of granulites in the study area, which indicates an uplift for the granulite-facies rocks from lower crustal conditions. The implications for supercontinent history are also addressed in light of available geochronological data.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackermand, D., Seifert, F. & Schreyer, W. 1975. Instability of sapphirine at high pressure. Contributions to Mineralogy and Petrology 50, 7992.Google Scholar
Aranovich, L. Y. & Podlesskii, K. K. 1989. Geothermobarometry of high grade metapelites: simultaneously operating reactions. In Evolution of Metamorphic Belts (eds Cliff, R. A., Yardley, B. W. D. & Daly, J. S.), pp. 4561. Geological Society of London, Special Publication no. 43.Google Scholar
Arima, M. & Barnett, R. L. 1984. Sapphirine-bearing granulites from the Sipiwesk Lake area of the Late Archean Pikwitonei granulite terrane, Manitoba, Canada. Contributions to Mineralogy and Petrology 88, 102–12.CrossRefGoogle Scholar
Berman, R. G. 1988. Internally consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2. Journal of Petrology 29, 445522.CrossRefGoogle Scholar
Berman, R. G. & Aranovich, L. Y. 1996. Optimized standard state and mixing properties of minerals: I. model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2. Contributions to Mineralogy and Petrology 126, 124.CrossRefGoogle Scholar
Berman, R. G., Aranovich, L. Ya. & Pattison, D. R. M. 1995. Reassessment of garnet–clinopyroxene Fe–Mg exchange thermometer: II. Thermodynamic analysis. Contributions to Mineralogy and Petrology 119, 3042.CrossRefGoogle Scholar
Bhattacharya, A., Krishnakumar, K. R., Raith, M. & Sen, S. K. 1991. An improved set of a–x parameters for Fe–Mg–Ca garnet and refinement of the Opx–Gt thermometer and the Opx–Gt–Plag–Qtz barometer. Journal of Petrology 32, 629–56.Google Scholar
Blundy, J. D. & Holland, T. J. B. 1990. Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer. Contributions to Mineralogy and Petrology 104, 208–24.CrossRefGoogle Scholar
Boger, S. D., Wilson, C. J. L. & Fanning, C. M. 2001. Early Palaeozoic tectonism within the East Antarctica craton: the final suture between east and west Gondwana? Geology 29, 463–6.Google Scholar
Brandt, S., Will, T. & Klemd, M. R. 2007. Magmatic loading in the proterozoic Epupa Complex, NW Namibia, as evidenced by ultrahigh-temperature sapphirine-bearing orthopyroxene–sillimanite–quartz granulites. Precambrian Research 153, 143–78.Google Scholar
Brown, M. 2002. Retrograde processes in migmatites and granulites revisited. Journal of Metamorphic Geology 20, 2540.Google Scholar
Carrington, D. P. & Harley, S. L. 1995. Partial melting and phase relations in high-grade metapelites: an experimental petrogenetic grid in the KFMASH system. Contributions to Mineralogy and Petrology 120, 270–91.CrossRefGoogle Scholar
Chadwick, B., Vasudev, V. N. & Hegde, G. V. 2000. The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Research 99, 91111.Google Scholar
Dobmeier, C. J. & Raith, M. M. 2003. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. In Proterozoic East Gondwana: Supercontinent Assembly and Breakup (eds Yoshida, M., Windley, B. E. & Dasgupta, S.), pp. 145–68. Geological Society of London, Special Publication no. 206.Google Scholar
Droop, G. T. R. 1987. A general equation for estimating Fe3+ concentrations in ferromagnesian silicate and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine 51, 431–5.CrossRefGoogle Scholar
Droop, G. T. R. 1989. Reaction history of garnet ± sapphirine granulite-facies metamorphism in the Central Limpopo mobile belt, Zimbabwe. Journal of Metamorphic Geology 7, 383403.Google Scholar
Droop, G. T. R. & Bucher-Nurminen, K. 1984. Reaction textures and metamorphic evolution of sapphirine-bearing granulites from the Gruf Complex, Italian Central Alps. Journal of Petrology 25, 766803.Google Scholar
Fitzsimons, I. C. W. 2000. Grenville-age basement provinces in East Antarctica: evidence for three separate collisional orogens. Geology 28, 879–82.Google Scholar
Friend, C. R. L. & Nutman, A. P. 1991. SHRIMP U–Pb geochronology of the Closepet granite and Peninsular gneisses, Karnataka, South India. Journal of Geological Society of India 38, 357–68.Google Scholar
Goscombe, B. 1992. Silica-undersaturated sapphirine, spinel and kornerupine granulite facies rocks, NE Strangeways Range, central Australia. Journal of Metamorphic Geology 10, 181201.Google Scholar
Grew, E. S., Suzuki, K. & Asami, M. 2001. CHIME ages of xenotime, monazite and zircon from beryllium pegmatites in the Napier Complex, Khamara Bay, Enderby Land, East Antarctica. Polar Geoscience 14, 99118.Google Scholar
Harley, S. L. 1984. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contributions to Mineralogy and Petrology 86, 359–73.Google Scholar
Harley, S. L. 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In What drives metamorphism and metamorphic reactions? (eds Treloar, P. J. & O'Brien, P. J.), pp. 81107. Geological Society of London, Special Publication no. 138.Google Scholar
Hensen, B. J. & Harley, S. L. 1990. Graphic analysis of P–T–X relations in granulite facies metapelites. In High-temperature metamorphism and crustal anatexis (eds Ashworth, J. R. & Brown, M.), pp. 1956. London: Unwin-Hyman.Google Scholar
Holdaway, M. J. & Mukhopadhyay, B. 1993. A re-evaluation of the stability relations of andalusite; Thermochemical data and phase diagram for the aluminum silicates. American Mineralogist 78, 298315.Google Scholar
Holland, T. J. B. & Powell, R. 1998. An internally consistent thermodynamic dataset for phases of petrological interest. Journal of Metamorphic Geology 16, 309–43.Google Scholar
Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H. & Sisson, V. B. 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist 72, 231–9.Google Scholar
Horrock, P. C. 1983. A corundum and sapphirine paragenesis from the Limpopo Mobile Belt, Southern Africa. Journal of Metamorphic Geology 1, 1323.Google Scholar
Jayananda, M., Martin, H., Peucat, J. J. & Mahabaleshwar, B. 1995. Late Archaean crust–mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, southern India. Contributions to Mineralogy and Petrology 119, 314–29.Google Scholar
Jayananda, M., Moyen, J. F., Martin, H., Peucat, J. J., Auvray, B. & Mahabaleswar, B. 2000. Late Archean (2550–2520 Ma) juvenile magmatism in the Eastern Dharwar Craton, Southern India: Constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Research 99, 225–54.Google Scholar
Kelly, N. M. & Harley, S. L. 2004. Orthopyroxene–corundum in Mg–Al-rich granulites from the Oygarden Islands, East Antarctica. Journal of Petrology 45, 14811512.CrossRefGoogle Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Kriegsman, L. M. & Schumacher, J. C. 1999. Petrology of sapphirine-bearing and associated granulites from Central Sri Lanka. Journal of Petrology 40, 1211–39.Google Scholar
Krogstad, E. J., Hanson, G. N. & Rajamani, V. 1995. Sources of continental magmatism adjacent to late Archaean Kolar suture zone, south India: distinct isotopic and elemental signatures of two late Archaean magmatic series. Contributions to Mineralogy and Petrology 122, 159–73.Google Scholar
Lal, R. K. 1993. Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet–orthopyroxene–plagioclase–quartz assemblages and their application to the South Indian granulites. Journal of Metamorphic Geology 11, 855–66.CrossRefGoogle Scholar
Lal, R. K., Ackermand, D., Seifert, F. & Halder, S. K. 1978. Chemographic relationships in sapphirine-bearing rocks from Sonapahar, Assam, India. Contributions to Mineralogy and Petrology 67, 169–87.Google Scholar
Leake, B. E., Woolley, A. R., Arps, C. A. E. S. et al. 1997. Nomenclature in Amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new mineral and mineral names. Mineralogical Magazine 61, 295321.Google Scholar
Moyen, J. F., Martin, H. & Jayananda, M. 2001. Multi-element geochemical modeling of crust–mantle interactions during late Archaean crustal growth: the Closepet granite, south India. Precambrian Research 112, 87105.CrossRefGoogle Scholar
Nutman, A. P., Chadwick, B., Ramakrishnan, M. & Vishwanatha, M. N. 1992. SHRIMP U–Pb ages of detrital zircon on Sargur supracrustal rocks in Western Karnataka, Southern India. Journal of Geological Society of India 39, 367–74.Google Scholar
Osanai, V., Hamamoto, T., Maishima, O. & Kagami, H. 1998. Sapphirine-bearing granulites and related high-temperature metamorphic rocks from the Higo metamorphic terrane, West Central Kyushu, Japan. Journal of Metamorphic Geology 16, 5166.Google Scholar
Ouzegane, K., Guiraud, M. & Kienast, J. R. 2003. Prograde and retrograde evolution in high-temperature corundum granulites (FMAS and KFMASH systems) from Ouzzal terrane (NW Hoggar, Algeria). Journal of Petrology 44, 517–45.Google Scholar
Owada, M., Osanai, Y., Toyoshima, T., Tsunogae, T., Hokada, T. & Kagami, H. 2001. Late Archaean to Proterozoic tectonothermal events in Napier Complex, East Antarctica: correlation with East Gondwana fragments. International Symposium and Field Workshop on the Assembly and Breakup of Rodinia and Gondwana, Osaka, 26–30 October 2001, pp. 724–5. Gondwana Research 4.Google Scholar
Owen, J. V. & Greenough, J. D. 1991. An empirical sapphirine–spinel Mg–Fe exchange thermometer and its application to high grade xenoliths in the Popes Harbour dyke, Nova Scotia, Canada. Lithos 26, 317–32.CrossRefGoogle Scholar
Perchuk, L. L., Aranovich, L. Y., Podleskii, K. K., Laverent'eva, I. V., Gerasimov, V. Y., Kitseel, V. I., Kersakov, L. P. & Perdnikov, K. V. 1985. Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Journal of Metamorphic Geology 3, 265310.Google Scholar
Perchuk, L. L. & Laverent'eva, I. V. 1990. Garnet–orthopyroxene and garnet amphibole geothermometry: experimental data and thermodynamics. International Geological Review 32, 486505.Google Scholar
Peterson, J. W. & Newton, R. C. 1989. Revised experiments on biotite–quartz–feldspar melting in the system KMASH: implications for crustal anatexis. Journal of Geology 97, 465–85.Google Scholar
Peucat, J. J., Mahabaleshwar, B. & Jayananda, M. 1993. Age of younger tonalitic magmatism and granulite metamorphism in the amphibolite–granulite transition zone of southern India (Krishnagiri area): comparison with older Peninsular gneisses of Gorur-Hassan area. Journal of Metamorphic Geology 11, 879–88.Google Scholar
Peucat, J. J., Vidal, P., Bernard-Griffiths, J. & Condie, K. C. 1989. Sr, Nd and Pb isotopic systems in the Archaean low- to high-grade transition zone of southern India: syn-accretion vs. post accretion granulites. Journal of Geology 97, 537–50.CrossRefGoogle Scholar
Prakash, D. & Sharma, I. N. 2008. Reaction Textures and Metamorphic Evolution of Quartz-Free Granulites from Namlekonda (Karimnagar), Andhra Pradesh, Southern India. International Geology Review 50, 1008–21.Google Scholar
Raith, M., Raase, P., Ackermand, D. & Lal, R. K. 1983. Regional geothermobarometry in the granulite facies terrane of South India. Transactions of the Royal Society of Edinburgh (Earth Sciences) 73, 221–44.Google Scholar
Rajesham, T., Bhaskar Rao, Y. J. & Murti, K. S. 1993. The Karimnagar granulite terrane – a new sapphirine-bearing granulite province, South India. Journal of Geological Society of India 41, 51–9.Google Scholar
Robinson, P., Spear, F. S., Schumacher, J. C., Laird, J., Klein, C., Evana, B. W. & Doolan, B. L. 1982. Phase relations of metamorphic amphiboles: natural occurrence and theory. In Amphiboles: Petrology and Experimental Phase Relations (eds Veblen, D. R. & Ribbe, P. H.), pp. 1–227. Reviews in Mineralogy, Mineralogical Society of America 9B.Google Scholar
Santosh, M., Yokoyama, K. & Acharyya, S. K. 2004. Geochronology and Tectonic Evolution of Karimnagar and Bhopalpatnam Granulite Belts, Central India. Gondwana Research 7, 501–18.Google Scholar
Sarvothaman, H. 1984. Occurrences of sapphirine-bearing rocks near Jagtiyal, Karimnagar district, A. P. Quarterly Journal of the Geological, Mineralogical, and Metallurgical Society of India 56, 202–7.Google Scholar
Sato, K., Miyamoto, T. & Kawasaki, T. 2006. Experimental calibration of sapphirine–spinel Fe2+–Mg exchange thermometer: Implication for constraints on P–T condition of Howard Hills, Napier Complex, East Antarctica. Gondwana Research 9, 398408.CrossRefGoogle Scholar
Seifert, F. 1974. Stability of sapphirine: a study of aluminous part of the system MgO–Al2O3–SiO2–H2O. Journal of Geology 82, 173204.CrossRefGoogle Scholar
Sharma, I. N. & Prakash, D. 2006. Occurrence of kornerupine-bearing granulites from Karimnagar, Andhra Pradesh. Current Science 91, 678–83.Google Scholar
Sharma, I. N. & Prakash, D. 2007. Reaction textures and P–T conditions of Opx–Crd gneisses from Karimnagar, Andhra Pradesh, India. Mineralogy and Petrology 90, 175–97.CrossRefGoogle Scholar
Sharma, I. N. & Prakash, D. 2008. A new occurrence of sapphirine-bearing granulite from Podur, Andhra Pradesh. Mineralogy and Petrology 92, 415–25.CrossRefGoogle Scholar
Spear, F. S., Kohn, M. J. & Cheney, J. T. 1999. P–T paths from anatectic pelites. Contributions to Mineralogy and Petrology 134, 1732.Google Scholar
Swami Nath, J. & Ramakrishnan, M. 1981. Early Precambrian supracrustals of southern Karnataka. Memoir Geological Society of India 112, 350.Google Scholar
Thompson, A. B. 2001. Clockwise P–T paths for crustal melting and H2O recycling in granite source region and migmatite terrain. Lithos 56, 3345.Google Scholar
Warren, R. G. 1983. Prograde and retrograde sapphirine in metamorphic rocks of the Central Arunta Block, Central Australia. BMR Journal of Australian Geology and Geophysics 8, 139–45.Google Scholar
Water, D. J. 1986. Metamorphic history of sapphirine-bearing and related magnesian gneisses from Namaqualand, South Africa. Journal of Petrology 27, 541–65.Google Scholar
Windley, B. F., Ackermand, D. & Herd, R. K. 1984. Sapphirine/kornerupine-bearing rocks and crustal uplift history of the Limpopo Belt, Southern Africa. Contributions to Mineralogy and Petrology 86, 342–58.Google Scholar
Supplementary material: PDF

Prakash supplementary material

Figures A1-A9.pdf

Download Prakash supplementary material(PDF)
PDF 215.9 KB
Supplementary material: PDF

Prakash supplementary material

Tables A1-A10.pdf

Download Prakash supplementary material(PDF)
PDF 714.5 KB