Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T22:10:03.910Z Has data issue: false hasContentIssue false

Mercury evidence from the Sino-Korean block for Emeishan volcanism during the Capitanian mass extinction

Published online by Cambridge University Press:  28 August 2018

HYOSANG KWON
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
MUN GI KIM
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
YONG IL LEE*
Affiliation:
School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea
*
*Author for correspondence: lee2602@plaza.snu.ac.kr

Abstract

A prominent large negative δ13Corg excursion and a coeval notable spike in mercury (Hg)/total organic carbon ratio are observed in the middle–upper Permian Gohan Formation in central Korea, located in the eastern Sino-Korean block (SKB), which may represent the Capitanian mass extinction event. The SKB was separated from the South China block by the eastern Palaeo-Tethys Ocean. This finding from the SKB supports the widespread Hg loading to the environment emitted from the Emeishan volcanic eruptions in SW China. This study demonstrates that the Hg cycle was globally perturbed in association with global carbon cycle perturbation that occurred during the Capitanian Extinction.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Society for Testing and Materials. 2006. Standard test method for total mercury in coal and coal combustion residues by direct combustion analysis: ASTM D6722-01. West Conshohocken, Pennsylvania, ASTM International, 4 p.Google Scholar
Arens, N. C., Jahren, A. H. & Amundson, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology 26, 137–64.2.0.CO;2>CrossRefGoogle Scholar
Belcher, C. M., Mander, L., Rein, G., Jervis, F. X., Haworth, M., Hesselbo, S. P., Glasspool, I. J. & McElwain, J. C. 2010. Increased fire activity at the Triassic/Jurassic boundary in Greenland due to climate-driven floral change. Nature Geoscience 3, 426–9.CrossRefGoogle Scholar
Benoit, J. M., Mason, R. P., Gilmour, C. C. & Aiken, G R. 2001. Constraints for mercury binding by dissolved organic matter isolates from the Florida Everglades. Geochimica et Cosmochimica Acta 65, 4445–51.CrossRefGoogle Scholar
Bergquist, B. A. 2017. Mercury, volcanism, and mass extinctions. Proceedings of National Academy of Sciences 114, 8675–7.CrossRefGoogle ScholarPubMed
Blum, J. D., Sherman, L. S. & Johnson, M. W. 2014. Mercury isotopes in earth and environmental sciences. Annual Review of Earth and Planetary Sciences 42, 249–69.CrossRefGoogle Scholar
Bond, D. P. & Grasby, S. E. 2017. On the causes of mass extinctions. Palaeogeography, Palaeoclimatology, Palaeoecology 478, 329.CrossRefGoogle Scholar
Bond, D. P. G., Hilton, J., Wignall, P. B., Ali, J. R., Stevebs, L. G., Sun, Y. & Lai, X. 2010a. The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth-Science Reviews 102, 100–16.CrossRefGoogle Scholar
Bond, D. P. G., Wignall, P. B., Joachimski, M. M., Sun, Y., Savov, I., Grasby, S. E., Beauchamp, B. & Blomeier, D. P. G. 2015. An abrupt extinction in the Middle Permian (Capitanian) of the boreal realm (Spitsbergen) and its link to anoxia and acidification. Geological Society of America Bulletin 127, 1411–21.CrossRefGoogle Scholar
Bond, D. P. G., Wignall, P. B., Wang, W., Izon, G., Jiang, H.-S., Lai, X.-L., Sun, Y.-D., Newton, R. J., Shao, L.-Y., Védrine, S. & Cope, H. 2010b. The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China. Palaeogeography, Palaeoclimatology, Palaeoecology 292, 282–94.CrossRefGoogle Scholar
Chun, H. Y. 1985. Permo-Carboniferous plant fossils from the Samcheog coalfield, Gangweondo, Korea. Part 1. Journal of Paleontological Society of Korea 1, 95122.Google Scholar
Chun, H. Y. 1987. Permo-Carboniferous plant fossils from the Samcheog coalfield, Gangweondo, Korea. Part 2. Journal of Paleontological Society of Korea 3, 127.Google Scholar
Courtillot, V. E. & Renne, P. R. 2003. On the ages of flood basalt events. Comptes Rendus Geoscience 335, 113–40.CrossRefGoogle Scholar
Dal Corso, J., Preto, N., Kustatscher, E., Mietto, P., Roghi, G. & Jenkyns, H. C. 2011. Carbon-isotope variability of Triassic amber, as compared with wood and leaves (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 302, 187–93.CrossRefGoogle Scholar
Day, M. O., Ramezani, J., Bowring, S. A., Sadler, P. M., Erwin, D. H., Abdala, F. & Rubidge, B. S. 2015. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa. Proceedings of the Royal Society B 282: 20150384.CrossRefGoogle ScholarPubMed
Doh, S.-J. 1995. Paleomagnetism of the Pyeongan Supergroup in the Samcheok area. Economic and Environmental Geology 28, 559–69 (in Korean with English abstract).Google Scholar
Doh, S.-J. & Piper, J. D. A. 1994. Palaeomagnetism of the (Upper Palaeozoic–Lower Mesozoic) Pyongan Supergroup, Korea: a Phanerozoic Link with the North China Block. Geophysical Journal International 117, 850–63.CrossRefGoogle Scholar
Ernst, R. E. & Youbi, N. 2017. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeography, Palaeoclimatology, Palaeoecology 478, 3052.CrossRefGoogle Scholar
Font, E., Adatte, T., Andrade, M., Keller, G., Bitchong, A. M., Carvallo, C., Ferreira, J., Diogo, Z. & Mirão, J. 2018. Deccan volcanism induced high-stress environment during the Cretaceous–Paleogene transition at Zumaia, Spain: Evidence from magnetic, mineralogical and biostratigraphic records. Earth and Planetary Science Letters 484, 5366.CrossRefGoogle Scholar
Font, E., Adatte, T., Sial, A. N., Drude de Lacerda, L., Keller, G. & Punekar, J. 2016. Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction. Geology 44, 171–4.CrossRefGoogle Scholar
Grasby, S. E., Beauchamp, B., Bond, D. P. G. & Wignall, P. B. 2016. Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea. Geological Magazine 153, 285–97.CrossRefGoogle Scholar
Grasby, S. E., Beauchamp, B., Bond, D. P. G., Wignall, P. B., Talavera, C., Galloway, J. M., Piepjohn, K., Reinhardt, L. & Blomeier, D. 2015. Progressive environmental deterioration in NW Pangea leading to the Latest Permian Extinction. Geological Society of America Bulletin 127, 1331–47.CrossRefGoogle Scholar
Gröcke, D. R., Hesselbo, S. P. & Jenkyns, H. C. 1999. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean–atmosphere chemistry and relation to sea-level change. Geology 27, 155–8.2.3.CO;2>CrossRefGoogle Scholar
Groves, J. R. & Wang, Y. 2013. Timing and size selectivity of the Guadalupian (Middle Permian) fusulinoidean extinction. Journal of Paleontology 87, 183–96.CrossRefGoogle Scholar
Hasegawa, T. 1997. Cenomanian–Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 130, 251–73.CrossRefGoogle Scholar
Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. 2007. Carbon-isotope record of the Early Jurassic (Torcian) Oceanic Anoxic Event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth and Planetary Science Letters 253, 455–70.CrossRefGoogle Scholar
Hong, S. K. & Lee, Y. I. 2013. Contributions of soot to δ13C of organic matter in Cretaceous lacustrine deposits, Gyeongsang Basin, Korea: implication for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 371, 5461.CrossRefGoogle Scholar
Hounslow, M. W. & Balabanov, Y. P. 2016. A geomagnetic polarity timescale for the Permian, calibrated to stage boundaries. In The Permian Timescale (eds Lucas, S. G. & Chen, S. Z.), pp. 61103. Geological Society of London, Special Publication no. 450.Google Scholar
Jones, B. & Manning, D. A. C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111, 111–29.CrossRefGoogle Scholar
Jourdan, F., Hodges, K., Sell, B., Schaltegger, U., Winggate, M. T. D., Evins, L. Z., Söderlund, U., Haines, P. W., Phillips, D. & Blenkinsop, T. 2014. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology 42, 543–6.CrossRefGoogle Scholar
Kaiho, K., Chen, Z. Q., Ohashi, T., Arinobu, T., Sawada, K. & Cramer, B. S. 2005. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 223, 172–80.CrossRefGoogle Scholar
Kim, M., Lee, Y. I. & Choi, T. 2017. The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U–Pb age and Nd isotope composition of the Pyeongan Supergroup (late Paleozoic–Early Triassic), Korea. Geological Magazine, published online 20 November 2017, doi: 10.1017/S0016756817000899.Google Scholar
Kongchum, M., Hudnall, W. H. & Delaune, R. D. 2011. Relationship between sediment clay minerals and total mercury. Journal of Environmental Science and Health, Part A 46, 534–9.CrossRefGoogle ScholarPubMed
Lee, Y. I., Choi, T. & Orihashi, Y. 2012. Depositional ages of upper Pyeongan Supergroup strata in the Samcheok coalfield, eastern central Korea. Journal of Geological Society of Korea 48, 93–9 (in Korean).Google Scholar
Lee, Y. I. & Sheen, D.-H. 1998. Detrital modes of the Pyeongan Supergroup (Late Carboniferous–Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sedimentary Geology 119, 219–38.CrossRefGoogle Scholar
Lucas, S. G. & Shen, S. Z. 2017. The Permian timescale: an introduction. In The Permian Timescale (eds Lucas, S. G. & Chen, S. Z.), pp. 119. Geological Society of London, Special Publication no. 450.Google Scholar
Meng, Q.-R. & Zhang, G.-W. 1999. Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology 27, 123–6.2.3.CO;2>CrossRefGoogle Scholar
Meyers, P. A. & Teranes, J. L. 2001. Sediment organic matter. In Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods (eds Last, W.M. & Smol, J.P.), pp. 239–69. New York: Springer.Google Scholar
Nunn, E. V., Price, G. D., Gröcke, D. R., Baraboshkin, E. Y., Leng, M. J. & Hart, M. B. 2010. The Valanginian positive carbon isotope event in Arctic Russia: Evidence from terrestrial and marine isotope records and implications for global carbon cycling. Cretaceous Research 31, 577–92.CrossRefGoogle Scholar
Outridge, P. M., Sanei, L. H., Stern, G. A., Hamilton, P. B. & Goodarzi, F. 2007. Evidence for control of mercury accumulation rates in Canadian High Arctic lake sediments by variations of aquatic primary productivity. Environmental Science Technology 41, 5259–65.CrossRefGoogle ScholarPubMed
Park, J. S., Shin, M. S., Jeong, C. S., Lee, M. H., Yoon, Y.D., Kim, S. H. & Hwang, H. S. 1975. Geological investigation report of Danyang coal field. Korea Institute of Geoscience and Mineral Resources, 54 pp (in Korean with English abstract).Google Scholar
Percival, L. M. E., Cohen, A. S., Davies, M. K., Dickson, A. J., Hesselbo, S. P., Jenkyns, H. C., Leng, M. J., Mather, T. A., Storm, M. S. & Xu, W. 2016. Osmium-isotope evidence for two pulses of increased continental weathering linked to volcanism and climate change during the Early Jurassic. Geology 44, 759–62.CrossRefGoogle Scholar
Percival, L. M. E., Ruhl, M., Hesselbo, S. P., Jenkyns, H. C. & Mather, T. A. 2017. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proceedings of National Academy of Sciences of the USA 114, 7929–34.CrossRefGoogle ScholarPubMed
Percival, L. M. E., Witt, M. L. I., Mather, T. A., Hermoso, M., Jenkyns, H. C., Hesselbo, S. P., Al-Suwaidi, A. H., Storm, M. S., Xu, W. & Ruhl, M. 2015. Globally enhanced mercury deposition during the end-Pliensbachian and Toarcian OAE: A link to the Karoo-Ferrar large Igneous Province. Earth and Planetary Science Letters 428, 267–80.CrossRefGoogle Scholar
Pyle, D. M. & Mather, T. A. 2003. The importance of volcanic emissions in the global atmospheric mercury cycle. Atmospheric Environment 37, 5115–24.CrossRefGoogle Scholar
Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. & Sheldon, N. D. 2006. Middle-Late Permian mass extinction on land. Geological Society of America Bulletin 118, 1398–411.CrossRefGoogle Scholar
Sanei, H., Grasby, S. E. & Beauchamp, B. 2012. Latest Permian mercury anomalies. Geology 40, 63–6.CrossRefGoogle Scholar
Shen, S. Z. & Shi, G. R. 2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin, Guangxi, South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld 18, 152–61.CrossRefGoogle Scholar
Sial, A. N., Chen, J., Lacerda, L. D., Frei, R., Tewari, V. C., Pandit, M. K., Gaucher, C., Ferreira, V. P., Cirilli, S., Peralta, S., Korte, C., Barbosa, J. A. & Pereira, N. S. 2016. Mercury enrichment and Hg isotopes in Cretaceous–Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretaceous Research 66, 6081.CrossRefGoogle Scholar
Sial, A. N., Chen, J., Lacerda, L. D., Peralta, S., Gaucher, C., Frei, R., Cirilli, S., Ferreira, V. P., Marquillas, R. A., Barbosa, J. A., Pereira, N. S. & Belmino, I. K. C. 2014. High-resolution Hg chemostratigraphy: A contribution to the distinction of chemical fingerprints of the Deccan volcanism and Cretaceous–Paleogene Boundary impact event. Palaeogeography, Palaeoclimatology, Palaeoecology 414, 98115.CrossRefGoogle Scholar
Sial, A. N., Lacerda, L. D., Ferreira, V. P., Frei, R., Marquillas, R. A., Barbosa, J. A., Gaucher, C., Windmöller, C. C. & Pereira, N. S. 2013. Mercury as a proxy for volcanic activity during extreme environmental turnover: The Cretaceous–Paleogene transition. Palaeogeography, Palaeoclimatology, Palaeoecology 387, 153–64.CrossRefGoogle Scholar
Stanley, S. M. & Yang, X. 1994. A double mass extinction at the end of the Paleozoic Era. Science 266, 1340–44.CrossRefGoogle ScholarPubMed
Stevens, L. G., Hilton, J., Bond, D. P. G., Glasspool, I. J. & Jardine, P. E. 2011. Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. Journal of the Geological Society 168, 607–19.CrossRefGoogle Scholar
Thibodeau, A. M. & Bergquist, B. A. 2017. Do mercury isotopes record the signature of massive volcanism in marine sedimentary records? Geology 45, 95–6.CrossRefGoogle Scholar
Wang, J. 2010. Late Paleozoic macrofloral assemblages from Weibei Coalfield, with reference to vegetational change through the Late Paleozoic Ice-age in the North China Block. International Journal of Coal Geology 83, 292317.CrossRefGoogle Scholar
Wignall, P. 2005. The link between large igneous province eruptions and mass extinction. Elements 1, 293–7.CrossRefGoogle Scholar
Wignall, P., Sun, Y., Bond, D. P. G., Izon, G., Newton, R. J., Védrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H. & Bottrell, S. H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–82.CrossRefGoogle ScholarPubMed
Yu, K.-M., Lee, G.-H. & Boggs, S. 1997. Petrology of late Paleozoic-early Mesozoic Pyeongan Group sandstones, Gohan area, South Korea and its provenance and tectonic implications. Sedimentary Geology 109, 321–38.CrossRefGoogle Scholar
Supplementary material: Image

Kwon et al. supplementary material

Figure S1

Download Kwon et al. supplementary material(Image)
Image 84.8 MB