Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:41:57.062Z Has data issue: false hasContentIssue false

Marine vertebrate fauna from the late Eocene Samlat Formation of Ad-Dakhla, southwestern Morocco

Published online by Cambridge University Press:  26 September 2017

SAMIR ZOUHRI*
Affiliation:
Laboratoire Santé & Environnement, Faculty of Science Aïn Chock, Hassan II University of Casablanca, Km 8, Bd Abdallah Ibrahim, BP 5366 Maarif 20100 Casablanca, Morocco
BOUZIANE KHALLOUFI
Affiliation:
Laboratoire Informatique et Systématique, UMR 7205, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP38, 75231 Paris Cedex 05, France
ESTELLE BOURDON
Affiliation:
Laboratoire Informatique et Systématique, UMR 7205, Université Pierre et Marie Curie, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP38, 75231 Paris Cedex 05, France Natural History Museum of Denmark, Section of Biosystematics, Universitetsparken 15, 2100 Copenhagen, Denmark
FRANCE DE LAPPARENT DE BROIN
Affiliation:
Sorbonne Universités, CR2P, MNHN/CNRS/UPMC, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP 38, 75231 Paris Cedex 05, France
JEAN-CLAUDE RAGE
Affiliation:
Sorbonne Universités, CR2P, MNHN/CNRS/UPMC, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP 38, 75231 Paris Cedex 05, France
LEILA M'HAÏDRAT
Affiliation:
Laboratoire Santé & Environnement, Faculty of Science Aïn Chock, Hassan II University of Casablanca, Km 8, Bd Abdallah Ibrahim, BP 5366 Maarif 20100 Casablanca, Morocco
PHILIP D. GINGERICH
Affiliation:
Museum of Paleontology, University of Michigan, 1109 Geddes Ave., Ann Arbor MI 48109-1079, USA
NAJIA ELBOUDALI
Affiliation:
Department of Geology, Faculty of Science Aïn Chock, Hassan II University of Casablanca, Km 8, Bd Abdallah Ibrahim, BP: 5366 Maarif 20100 Casablanca, Morocco
*
Author for correspondence: s.zouhri@fsac.ac.ma

Abstract

Late Eocene deposits of the Samlat Formation, south of Ad-Dakhla city, southwestern Morocco, have yielded a mixed marine and terrestrial vertebrate fauna. Abundant and diversified chondrichthyans and archaeocete whales have been found, as well as the remains of sirenians and proboscideans. Here we describe the rest of this fossil assemblage which includes actinopterygians, turtles, palaeophiid snakes, crocodiles and pelagornithid seabirds. Actinopterygians are represented by at least two large-sized taxa, a scombroid probably close to the extant Acanthocybium or to the Eocene Aramichthys, and a siluriform related to the Ariidae. Turtles include at least four species represented by shell fragments. This mixed coastal and continental turtle fauna includes one littoral species of Podocnemididae, one or two deep-sea species of Dermochelyidae and one deep-sea species of Cheloniidae. Another turtle species is assigned to the terrestrial Testudinidae. Fragmentary crocodilian remains indicate the presence of undetermined eusuchians tentatively referred to Gavialidae and/or to Crocodylidae. Snake vertebrae are tentatively attributed to the genus Pterosphenus (Palaeophiidae) pending the discovery of new material. Avian remains belong to a large pseudo-toothed bird (Pelagornithidae). Pseudo-tooth morphology resembles that of the late Oligocene – Neogene genus Pelagornis. Additional bird remains are needed for a more precise taxonomic assignment. The fossil assemblage and palaeoenvironment of the upper Eocene deposits of the Samlat Formation appear closely related to those of the upper Eocene – lower Oligocene deposits of the Fayum (Egypt). The initial overview of this fauna provides an important contribution to the study of vertebrate evolution in North Africa near the Eocene–Oligocene transition.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adnet, S., Cappetta, H. & Tabuce, R. 2010. A Middle-Late Eocene vertebrate fauna (marine fish and mammals) from southwestern Morocco; preliminary report: age and palaeobiogeographical implications. Geological Magazine 147 (6), 860–70.Google Scholar
Andrews, C. W. 1901. Preliminary note on some recently discovered extinct Vertebrates from Egypt. Part II. Geological Magazine 4 (8), 436–44.Google Scholar
Andrews, C. W. 1903. On some pleurodiran Chelonians from the Eocene of the Fayum, Egypt. Annals and Magazine of Natural History (series 7) 11, 115–22.Google Scholar
Andrews, C. W. 1905. Notes on some New Crocodilia from the Eocene of Egypt. Geological Magazine 2 (11), 481–4.Google Scholar
Andrews, C. W. 1906. A descriptive catalogue of the Tertiary Vertebrata of the Fayu , Egypt. Based on the collection of the Egyptian government in the Geological museum, Cairo, and on the collection in the British museum (Natural history), London. London: Trustees of the British Museum, 324+xxvipp.Google Scholar
Andrews, C. W. 1916. Note on the sternum of a large carinate bird from the (?) Eocene of Southern Nigeria. Proceedings of the Zoological Society of London 1916, 519–24.Google Scholar
Andrews, C. W. 1919. A description of new species of Zeuglodont and of Leathery Turtle from the Eocene of Southern Nigeria. Proceedings of the Zoological Society of London 89 (3–4), 309–19.Google Scholar
Andrews, C. W. 1924. Note on some Ophidian vertebrae from Nigeria. Geological Survey of Nigeria 7, 3943.Google Scholar
Andrews, C. W. & Beadnell, H. J. L. 1903. A preliminary notice of a Land-tortoise from the Upper Eocene of the Fayum. Cairo: National Printing Department, 11 pp.Google Scholar
Antunes, M. T. & de Broin, F. 1988. Le Crétacé terminal de Beira Litoral, Portugal: remarques stratigraphiques et écologiques; étude complémentaire de Rosasia soutoi (Chelonii, Bothremydidae). Ciências da Terra (UNL) 9, 153200.Google Scholar
Arambourg, C. 1952. Les Vertébrés fossiles des gisements de phosphates (Maroc, Algérie, Tunisie). Notes et Mémoires du Service Géologique du Maroc 92, 1372.Google Scholar
Aslanova, S. M. & Burchak-Abramovich, N. I. 1982. The first and unique find of the fossil of Perekishkul toothed bird in the territory of USSR and in the Asiatic continent. Izvestiâ Akademii nauk SSR. Seriâ Biologiceskaâ 8 (6), 406–12.Google Scholar
Aslanova, S. M. & Burchak-Abramovich, N. I. 1999. A detailed description of Caspiodontornis kobystanicus from the Oligocene of the Caspian seashore. Acta Zoologica Cracoviensia 42 (3), 423–33.Google Scholar
Averianov, A. 1997. Paleogene sea snakes from the eastern part of Tethys. Russian Journal of Herpetology 4, 128–42.Google Scholar
Averianov, A. O., Panteleyev, A. V., Potapova, O. R. & Nessov, L. A. 1991. Bony-toothed birds (Aves: Pelecaniformes: Odontopterygia) from the late Paleocene and Eocene of the Western margin of ancient Asia. Proceedings of the Zoological Institute, USSR Academy of Sciences 239, 312.Google Scholar
Bajpai, S. & Gingerich, P. D. 1998. A new Eocene archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proceedings of the National Academy of Sciences of the United States of America 95 (26), 15464–8.Google Scholar
Bardet, N., Gheerbrant, E., Cappetta, H., Noubhani, A., Jouve, S., Bourdon, E., Pereda Suberbiola, X., Jalil, N.-E., Vincent, P., Houssaye, A., Solé, F., El Houssaini Darif, K., Adnet, S., Rage, J.-C., de Lapparent de Broin, F. D., Sudre, J., Bouya, B., Amaghzaz, M. & Meslouh, S. 2017. Les Vertébrés des Phosphates crétacés-paléogènes (70.6–46.6 Ma) du Maroc. In Paléontologie des Vertébrés du Maroc: État des Connaissances (ed Zouhri, S.), pp. 351452. Paris: Mémoires de la Société Géologique de France, Nouvelle Série, 180.Google Scholar
Bardet, N., Jalil, N.-E., De Lapparent De Broin, F., Germain, D., Lambert, O. & Amaghzaz, M. 2013. A giant chelonioid turtle from the Late Cretaceous of Morocco with a suction feeding apparatus unique among tetrapods. PLoS ONE 8 (7), e63586.Google Scholar
Batsch, A. J. G. C. 1788. Versuch einer Anleitung zur Kenntniß und Geschichte der Thiere und Mineralien: für academische Vorlesungen entworfen und mit den nöthigsten Abbildungen versehen. Jena: Akademischen Buchhandlung, 528 pp.Google Scholar
Baumel, J. J. & Witmer, L. M. 1993. Osteologia. In Handbook of Avian Anatomy: Nomina Anatomica Avium (eds Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C.), pp. 45132. Cambridge: Nuttall Ornithological Club.Google Scholar
Benoit, J., Adnet, S., El Mabrouk, E., Khayati, H., Ben Haj Ali, M., Marivaux, L., Merzeraud, G., Merigeaud, S., Vianey-Liaud, M. & Tabuce, R. 2013. Cranial remain from Tunisia provides new clues for the origin and evolution of Sirenia (Mammalia, Afrotheria) in Africa. PLoS ONE 8 (1), e54307.Google Scholar
Blainville, H.-M. D. D. 1816. Prodrome d'une nouvelle distribution systématique du règne animal. Bulletin de la Société Philomathique, Paris 8 (113), 105–24.Google Scholar
Bleeker, P. 1858. Stelsel der Siluren. Natuurkundig Tijdschrift voor Nederlandsch Indië 16, 3841.Google Scholar
Blondel, J. & Mourer-Chauviré, C. 1998. Evolution and history of the western Palaearctic avifauna. Trends in Ecology & Evolution 13 (12), 488–92.Google Scholar
Boessenecker, R. W. & Smith, N. A. 2011. Latest Pacific basin record of a bony-toothed bird (Aves, Pelagornithidae) from the Pliocene Purisima Formation of California, U.S.A. Journal of Vertebrate Paleontology 31 (3), 652–7.Google Scholar
Böhm, J. 1926. Über tertiäre Versteinerungen von den Bogenfelser Diamantfelder. In Die Diamantenwüste Südwestafrikas (eds Beetze, W. & Kaiser, E.), pp. 5587. Berlin: Dietrich Reimer.Google Scholar
Bourdon, E. 2005. Osteological evidence for sister group relationship between pseudo-toothed birds (Aves: Odontopterygiformes) and waterfowls (Anseriformes). Naturwissenschaften 92 (12), 586–91.Google Scholar
Bourdon, E. 2011. The pseudo-toothed birds (Aves, Odontopterygiformes) and their bearing on the early evolution of modern birds. In Living Dinosaurs: The Evolutionary History of Modern Birds (eds Dyke, G. J. & Kaiser, G. W.), pp. 209–34. Chichester: John Wiley & Sons, Ltd.Google Scholar
Bourdon, E., Amaghzaz, M. & Bouya, B. 2010. Pseudotoothed birds (Aves, Odontopterygiformes) from the Early Tertiary of Morocco. American Museum Novitates 3704, 171.Google Scholar
Bourdon, E. & Cappetta, H. 2012. Pseudo-toothed birds (Aves, Odontopterygiformes) from the Eocene phosphate deposits of Togo, Africa. Journal of Vertebrate Paleontology 32 (4), 965–70.Google Scholar
Bowerbank, J. S. 1854. On the remains of a gigantic bird (Lithornis emuinus) from the London Clay of Sheppey. Annals and Magazine of Natural History 14, 263–4.Google Scholar
Brochu, C. A. 2006. Osteology and phylogenetic significance of Eosuchus minor (Marsh, 1870) new combination, a longirostrine Crocodylian from the Late Paleocene of North America. Journal of Paleontology 80 (1), 162–86.Google Scholar
Brongniart, A. 1800. Essai d'une classification naturelle des reptiles. 1ère partie. Etablissement des Ordres. Bulletin des Sciences, par la Société Philomatique, Paris 2 (35), 81–2.Google Scholar
Buffetaut, E. 1982. Systématique, origine et évolution des Gavialidae Sud-Américains. Geobios 15(Supplément 1, Mémoire Spécial 6), 127–40.Google Scholar
Buffetaut, E. 1989. A new ziphodont mesosuchian crocodile from the Eocene of Algeria. Palaeontographica Abteilung A 208 (1–3), 110.Google Scholar
Cappetta, H. & Traverse, M. 1988. Une riche faune de Sélaciens dans le bassin à phosphate de Kpogamé-Hahotoé (Éocène moyen du Togo): Note préliminaire et précisions sur la structure et l’âge du gisement. Geobios 21 (3), 359–65.Google Scholar
Carpenter, K. E., Collette, B. B. & Russo, J. L. 1995. Unstable and stable classifications of scombroid fishes. Bulletin of Marine Science 56 (2), 379405.Google Scholar
Case, G. R. & Borodin, P. D. 2000. Late Eocene selachians from the Irwinton Sand Member of the Barnwell Formation (Jacksonian), WKA mines, Gordon, Wilkinson County, Georgia. Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie 39, 516.Google Scholar
Casier, E. 1957. Les faunes ichthyologiques du Crétacé et du Cénozoïque de l'Angola et de l'Enclave de Cabinda. Leurs affinités paléobiogéographiques. Comunicações dos Serviços Geológicos de Portugal 38, 269– 90.Google Scholar
Casier, E. 1966. Faune Ichthyologique du London Clay. London: Trustees of the British Museum (Natural History), 496+lxviiipp.Google Scholar
Castro Leal, M. E. & Brito, P. M. 2007. Intraspecific variation of the caudal fin skeleton in Osteoglossum bicirrhosum Cuvier 1829 (Teleostei: Osteoglossomorpha: Osteoglossidae). Zootaxa 1434, 126.Google Scholar
Cenizo, M., Hospitaleche, C. A. & Reguero, M. 2015. Diversity of pseudo-toothed birds (Pelagornithidae) from the Eocene of Antarctica. Journal of Paleontology 89 (5), 870–81.Google Scholar
Collette, B. B. & Russo, J. L. 1984. Morphology, systematics, and biology of the Spanish mackerels (Scomberomorus, Scombridae). Fishery Bulletin 82 (4), 545713.Google Scholar
Cope, E. D. 1864. On the limits and relations of the Raniformes. Proceedings of the Academy of Natural Sciences of Philadelphia 16 (4), 181–3.Google Scholar
Cope, E. D. 1868. On the origin of genera. Proceedings of the Academy of Natural Sciences of Philadelphia 20, 242300.Google Scholar
Cuvier, G. 1817. Le règne animal distribué d'après son organisation, pour servir de base à l'histoire naturelle des animaux et d'introduction à l'anatomie comparée. Les Reptiles, les Poissons, les Mollusques et les Annélides. Paris: Déterville, 532 pp.Google Scholar
Dames, W. 1883. Über eine tertiäre Wirbelthierfauna von der westlichen Insel des Birket-el-Qurun im Fajum (Aegypten). Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 6, 129–53.Google Scholar
Dacqué, E. 1912. Die fossilen Schildkröten Aegyptens. Geologische und Palaeontologische Abhandlungen 10 (4), 275337.Google Scholar
Davison, I. 2005. Central Atlantic margin basins of North West Africa: Geology and hydrocarbon potential (Morocco to Guinea). Journal of African Earth Sciences 43 (1–3), 254–74.Google Scholar
de Broin, F. 1977. Contribution à l’étude des Chéloniens. Chéloniens continentaux du Crétacé et du Tertiaire de France. Mémoires du Muséum National d'Histoire Naturelle Paris, Série C 38 (I–IX), 1366.Google Scholar
de Broin, F. 1988. Les Tortues et le Gondwana. Examen des rapports entre le fractionnement du Gondawana et la dispersion géographique des Tortues pleurodires à partir du Crétacé. Studia Geologica Salmanticensis, Studia Palaeocheloniologica 2 (5), 103–42.Google Scholar
de Broin, F. & Pironon, B. 1980. Découverte d'une tortue dermochélyidée dans le Miocène d'Italie Centro-Méridionale (Mátese oriental), province de Benevento. Rivista Italiana di Paleontologia 86 (3), 589604.Google Scholar
de Lapparent de Broin, F. 2000. African chelonians from the Jurassic to the Present: Phases of development and preliminary catalogue of the fossil record. Palaeontologia Africana 36, 4382.Google Scholar
de Lapparent de Broin, F. 2001. The European turtle fauna from the Triassic to the Present. Dumerilia 4 (3), 155217.Google Scholar
de Lapparent de Broin, F., Murelaga, X., Farrés, F. & Altimiras, J. 2014. An exceptional cheloniid turtle, Osonachelus decorata nov. gen., nov. sp., from the Eocene (Bartonian) of Catalonia (Spain). Geobios 47 (3), 111–32.Google Scholar
Delfino, M., Piras, P. & Smith, T. 2005. Anatomy and phylogeny of the gavialoid crocodilian Eosuchus lerichei from the Paleocene of Europe. Acta Palaeontologica Polonica 50 (3), 565–80.Google Scholar
Delfino, M., Scheyer, T. M., Chesi, F., Fletcher, T., Gemel, R., Macdonald, S., Rabi, M. & Salisbury, S. W. 2013. Gross morphology and microstructure of type locality ossicles of Psephophorus polygonus Meyer, 1847 (Testudines, Dermochelyidae). Geological Magazine 150 (5), 767–82.Google Scholar
El-Sayed, S. E., Kora, M. A., Sallam, H. M., Claeson, K. M., Seiffert, E. R. & Antar, M. S. 2017. A new genus and species of marine catfishes (Siluriformes; Ariidae) from the upper Eocene Birket Qarun Formation, Wadi El-Hitan, Egypt. PLoS ONE 12 (3), e0172409.Google Scholar
Ferreira, G. S., Rincón, A. D., Solórzano, A. & Langer, M. C. 2015. The last marine pelomedusoids (Testudines: Pleurodira): a new species of Bairdemys and the paleoecology of Stereogenyina. PeerJ 3, e1063.Google Scholar
Field, D., Racicot, R. & Uhen, M. 2011. A new marine tetrapod assemblage from the Eocene of Western Sahara. Journal of Vertebrate Paleontology 31 (2), 108–9.Google Scholar
Fitzgerald, E. M. G., Park, T. & Worthy, T. H. 2012. First giant bony-toothed bird (Pelagornithidae) from Australia. Journal of Vertebrate Paleontology 32 (4), 971–4.Google Scholar
Fitzinger, L. 1843. Systema Reptilium. Fasciculus primus: Amblyglossae. Wien: Braumüller & Seidel, 106 pp.Google Scholar
Friedman, M., Beckett, H. T., Close, R. A. & Johanson, Z. 2015. The English Chalk and London Clay: two remarkable British bony fish Lagerstätten. In Arthur Smith Woodward: His Life and Influence on Modern Vertebrate Palaeontology (eds Johanson, Z., Richter, M. and Smith, M.), pp. 165200. London: Geological Society, Special Publication No. 430.Google Scholar
Fürbringer, M. 1888. Untersuchungen zur Morphologie und Systematik der Vögel, zugleich ein Beitrag zur Anatomie der Stütz- und Bewegungsorgane. Amsterdam: Van Holkema, 1751 pp.Google Scholar
Gaffney, E. S., Meylan, P. A., Wood, R. C., Simons, E. & De Almeida Campos, D. 2011. Evolution of the side-necked turtles: The family Podocnemididae. Bulletin of the American Museum of Natural History, 1237.Google Scholar
Gaffney, E. S., Tong, H. & Meylan, P. A. 2006. Evolution of the side-necked turtles: the families Bothremydidae, Euraxemydidae, and Araripemydidae. Bulletin of the American Museum of Natural History 300, 1698.Google Scholar
Gayet, M. & Meunier, F. 1998. Maastrichtian to Early Late Paleocene freshwater Osteichthyes of Bolivia: Additions and comments. In Phylogeny and Classification of Neotropical Fishes (eds Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M. S. & Lucena, C. A. S.), pp. 85110. Porto Alegre: Edipucrs.Google Scholar
Gayet, M. & Meunier, F. 2003. Palaeontology and palaeobiogeography of Catfishes. In Catfishes (eds Arratia, G., Kapoor, B. G., Chardon, M. & Diogo, R.). pp. 491522. Enfield: Science Publishers.Google Scholar
Gayet, M. & van Neer, W. 1990. Caractères diagnostiques des épines de quelques silures africains. Revue de Zoologie Africaine, 241–52.Google Scholar
Gervais, P. 1872. Ostéologie du Sphargis Luth (Sphargis coriacea). Nouvelles Archives du Muséum d'Histoire Naturelle de Paris 8, 199228.Google Scholar
Gheerbrant, E., Cappetta, H., de Lapparent de Broin, F., Rage, J.-C. & Tabuce, R. 2017. Les faunes de vertébrés marins et terrestres du Paléogène du bassin d'Ouarzazate, Maroc. In Paléontologie des Vertébrés du Maroc: État des Connaissances (ed. Zouhri, S.), pp. 485525. Paris: Mémoires de la Société Géologique de France, Nouvelle Série, 180.Google Scholar
Gingerich, P. D. 1992. Marine mammals (Cetacea and Sirenia) from the Eocene of Gebel Mokattam and Fayum, Egypt: Stratigraphy, age and paleoenvironments. Papers on Paleontology – University of Michigan 30, 184.Google Scholar
Gingerich, P. D. & Cappetta, H. 2014. A new Archaeocete and other marine mammals (Cetacea and Sirenia) from Lower Middle Eocene phosphate deposits of Togo. Journal of Paleontology 88 (1), 109–29.Google Scholar
Gingerich, P. D. & Zouhri, S. 2015. New fauna of archaeocete whales (Mammalia, Cetacea) from the Bartonian middle Eocene of southern Morocco. Journal of African Earth Sciences 111, 273–86.Google Scholar
Goldner, A., Herold, N. & Huber, M. 2014. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition. Nature 511 (7511), 574–7.Google Scholar
Haddoumi, H., Allain, R., Meslouh, S., Metais, G., Monbaron, M., Pons, D., Rage, J.-C., Vullo, R., Zouhri, S. & Gheerbrant, E. 2016. Guelb el Ahmar (Bathonian, Anoual Syncline, eastern Morocco): First continental flora and fauna including mammals from the Middle Jurassic of Africa. Gondwana Research 29 (1), 290319.Google Scholar
Halstead, L. B. & Middleton, J. A. 1974. New material of the archaeocete whale, Pappocetus lugardi Andrews, from the middle Eocene of Nigeria. Journal of Mining and Geology 8, 81–5.Google Scholar
Halstead, L. B. & Middleton, J. A. 1976. Fossil vertebrates of Nigeria. Part II, 3.4, Archaeocete whale Pappocetus lugardi Andrews, 1920. Nigerian Field 41, 131–3.Google Scholar
Harrison, C. J. O. 1985. A bony-toothed bird (Odontopterygiformes) from the Palaeocene of England. Tertiary Research 7 (1), 23–5.Google Scholar
Harrison, C. J. O. & Walker, C. A. 1976. A review of the bony-toothed birds (Odontopterygiformes): with description of some new species. Tertiary Research Special Paper 2, 162.Google Scholar
Hautier, L., Sarr, R., Lihoreau, F., Tabuce, R. & Hameh, P. M. 2014. First record of the family Protocetidae in the Lutetian of Senegal (West Africa). Palaeovertebrata 38 (2), e2.Google Scholar
Hautier, L., Sarr, R., Tabuce, R., Lihoreau, F., Adnet, S., Domning, D. P., Samb, M. & Hameh, P. M. 2012. First prorastomid sirenian from Senegal (Western Africa) and the Old World origin of sea cows. Journal of Vertebrate Paleontology 32 (5), 1218–22.Google Scholar
Hirayama, R. E. N. & Chitoku, T. 1996. Family Dermochelyidae (Superfamily Chelonioidea) from the Upper Cretaceous of North Japan. Transactions and Proceedings of the Paleontological Society of Japan, New Series 1996 (184), 597622.Google Scholar
Hoffstetter, R. 1961. Nouvelles récoltes de serpents fossiles dans l'Eocène supérieur du Désert Libyque. Bulletin du Museum National d'Histoire Naturelle, 2e série 33 (3), 326–31.Google Scholar
Hooker, J. J., Collinson, M. E. & Sille, N. P. 2004. Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. Journal of the Geological Society 161 (2), 161–72.Google Scholar
Houben, A. J. P., Van Mourik, C. A., Montanari, A., Coccioni, R. & Brinkhuis, H. 2012. The Eocene–Oligocene transition: Changes in sea level, temperature or both? Palaeogeography, Palaeoclimatology, Palaeoecology 335–6, 7583.Google Scholar
Houssaye, A., Rage, J.-C., Bardet, N., Vincent, P., Amaghzaz, M. & Meslouh, S. 2013. New highlights about the enigmatic marine snake Palaeophis maghrebianus (Palaeophiidae; Palaeophiinae) from the Ypresian (Lower Eocene) phosphates of Morocco. Palaeontology 56 (3), 647–61.Google Scholar
Howard, H. 1957. A gigantic “toothed” marine bird from the Miocene of California. Bulletin of the Department of Geology of the Santa Barbara Museum of Natural History 1, 123.Google Scholar
Huxley, T. H. 1875. On Stagonolepis Robertsoni, and on the evolution of the Crocodilia. Quarterly Journal of the Geological Society 31 (1–4), 423–38+i.Google Scholar
Janensch, W. 1906. Pterosphenus Schweinfurthi Andrews und die Entwicklung der Palaeophiden. Archiv für Biontologie 1, 307–50.Google Scholar
Johnson, D. G. 1986. Scombroid phylogeny: an alternative hypothesis. Bulletin of Marine Science 39 (1), 141.Google Scholar
Johnson, D. G. & Patterson, C. 1993. Percomorph phylogeny: A survey of Acanthomorphs and a new proposal. Bulletin of Marine Science 52 (1), 554626.Google Scholar
Jouve, S., Iarochène, M., Bouya, B. & Amaghzaz, M. 2005. A new dyrosaurid crocodyliform from the Palaeocene of Morocco and a phylogenetic analysis of Dyrosauridae. Acta Palaeontologica Polonica 50 (3), 581–94.Google Scholar
Jouve, S., Iarochène, M., Bouya, B. & Amaghzaz, M. 2006. New material of Argochampsa krebsi (Crocodylia: Gavialoidea) from the Lower Paleocene of the Oulad Abdoun Basin (Morocco): phylogenetic implications. Geobios 39 (6), 817–32.Google Scholar
Khalloufi, B., Brito, P. M. M., Cavin, L. & Dutheil, D. B. 2017. Revue des ichthyofaunes Mésozoïques et Cénozoïques Marocaines. In Paléontologie des Vertébrés du Maroc: État des Connaissances (ed Zouhri, S.), pp. 167248. Paris: Mémoires de la Société Géologique de France, Nouvelle Série, 180.Google Scholar
Kohno, H. 1984. Osteology and systematic position of the Butterfly Mackerel (Gasterochisma melampus). Japanese Journal of Ichthyology 31 (3), 268–86.Google Scholar
Ksepka, D. T. 2014. Flight performance of the largest volant bird. Proceedings of the National Academy of Sciences of the United States of America 111 (29), 10624–9.Google Scholar
Lartet, E. 1857. Note sur un humérus fossile d'oiseau, attribué à un très grand palmipède de la section des Longipennes. Compte Rendu Hebdomadaire des Séances de l'Académie des Sciences 44, 736–41.Google Scholar
Leriche, M. 1905. Les Poissons éocènes de la Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique 3, 51–228+ix.Google Scholar
Leriche, M. 1906. Contribution à l’étude des poissons fossiles du nord de la France et des régions voisines. Mémoires de la Société Géologique du Nord 5 (1), 1–430+xvii.Google Scholar
Leriche, M. 1910. Les Poissons oligocènes de la Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique 5, 231–363+xv.Google Scholar
Llinás Agrasar, E. 2004. Crocodilian remains from the Upper Eocene of Dor-El-Talha, Libya. Annales de Paléontologie 90 (4), 209–22.Google Scholar
Longbottom, A. 2010. A new species of the catfish Nigerium from the Palaeogene of the Tilemsi Valley, Republic of Mali. Palaeontology 53 (3), 571–94.Google Scholar
Lopez, N. & Thaler, L. 1974. Sur le plus ancien lagomorphe européen et la ‘Grande Coupure’ Oligocène de Stehlin. Palaeovertebrata 6 (3–4), 243–51.Google Scholar
Louchart, A., Sire, J.-Y., Mourer-Chauviré, C., Geraads, D., Viriot, L. & Buffrénil, V. D. 2013. Structure and growth pattern of pseudoteeth in Pelagornis mauretanicus (Aves, Odontopterygiformes, Pelagornithidae). PLoS ONE 8 (11), e80372.Google Scholar
Lucas, F. A. 1899. A new snake from the Eocene of Alabama. Proceedings of the US National Museum 21, 637–8.Google Scholar
Lundberg, J. G. 1993. African-South American freshwater fish clades and continental drift: Problems with a paradigm. In Biological Relationships between Africa and South America (ed. Goldblatt, P.), pp. 156–99. New Haven, London: Yale University Press.Google Scholar
Lydekker, R. 1888. Notes on Tertiary Lacertilia and Ophidia. Geological Magazine 5 (3), 110–3.Google Scholar
Mahboubi, M., Ameur, R., Crocher, J. Y. & Jaeger, J.-J. 1986. El Kohol (Saharan Atlas, Algeria): a new Eocene Mammal locality in Northwestern Africa. Stratigraphical, phylogenetic and paleobiogeographical data. Palaeontographica Abteilung A A192 (1–3), 1549.Google Scholar
Marivaux, L., Adnet, S., Benammi, M., Tabuce, R. & Benammi, M. 2017. Anomaluroid rodents from the earliest Oligocene of Dakhla, Morocco, reveal the long-lived and morphologically conservative pattern of the Anomaluridae and Nonanomaluridae during the Tertiary in Africa. Journal of Systematic Palaeontology 15, 539–69.Google Scholar
Matsuoka, H., Sakakura, F. & Ohe, F. 1998. A Miocene pseudodontorn (Pelecaniformes: Pelagornithidae) from the Ichishi Group of Misato, Mie Prefecture, Central Japan. Paleontological Research 2, 246–52.Google Scholar
Mayr, G. 2008. A skull of the giant bony-toothed bird Dasornis (Aves: Pelagornithidae) from the Lower Eocene of the Isle of Sheppey. Palaeontology 51 (5), 1107– 16.Google Scholar
Mayr, G. 2011. Cenozoic mystery birds – on the phylogenetic affinities of bony-toothed birds (Pelagornithidae). Zoologica Scripta 40 (5), 448–67.Google Scholar
Mayr, G., Goedert, J. L. & Mcleod, S. A. 2013. Partial skeleton of a bony-toothed bird from the Late Oligocene/Early Miocene of Oregon (USA) and the systematics of Neogene Pelagornithidae. Journal of Paleontology 87 (5), 922–9.Google Scholar
Mayr, G. & Rubilar-Rogers, D. 2010. Osteology of a new giant bony-toothed bird from the Miocene of Chile, with a revision of the taxonomy of Neogene Pelagornithidae. Journal of Vertebrate Paleontology 30 (5), 1313–30.Google Scholar
Mayr, G. & Smith, T. 2010. Bony-toothed birds (Aves: Pelagornithidae) from the Middle Eocene of Belgium. Palaeontology 53 (2), 365–76.Google Scholar
Mayr, G. & Zvonok, E. 2011. Middle Eocene Pelagornithidae and Gaviiformes (Aves) from the Ukrainian Paratethys. Palaeontology 54 (6), 1347–59.Google Scholar
Mayr, G. & Zvonok, E. 2012. A new genus and species of Pelagornithidae with well-preserved pseudodentition and further avian remains from the middle Eocene of the Ukraine. Journal of Vertebrate Paleontology 32 (4), 914–25.Google Scholar
McCartney, J. A. & Seiffert, E. R. 2016. A Late Eocene snake fauna from the Fayum Depression, Egypt. Journal of Vertebrate Paleontology 36 (1), e1029580.Google Scholar
Mlynarski, M. 1976. Testudines. Stuttgart, New York: Gustav Fischer Verlag.Google Scholar
Monod, T. 1968. Le complexe urophore des poissons téléostéens. Mémoires de l'Institut Fondamental d'Afrique Noire, pp. 1705 Dakar: IFAN, series 81.Google Scholar
Monsch, K. A. 2004. Revision of the scombroid fishes from the Cenozoic of England. Transactions of the Royal Society of Edinburgh: Earth Sciences 95, 445–89.Google Scholar
Monsch, K. A. & Bannikov, A. F. 2011. New taxonomic synopses and revision of the scombroid fishes (Scombroidei, Perciformes), including billfishes, from the Cenozoic of territories of the former USSR. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102 (04), 253300.Google Scholar
Moody, R. T. J. 1993. Cretaceous-Tertiary marine turtles of North West Europe. Revue de Paléobiologie 7, 51160.Google Scholar
Mourer-Chauviré, C. & Geraads, D. 2008. The Struthionidae and Pelagornithidae (Aves: Struthioniformes, Odontopterygiformes) from the late Pliocene of Ahl al Oughlam, Morocco. Oryctos 7, 169–94.Google Scholar
Müller, J. P. 1845. Ueber den Bau und die Grenzen der Ganoiden und über das natürliche System der Fische. Archiv für Naturgeschichte 11 (1), 91141.Google Scholar
Murray, A. M. 2000. The Palaeozoic, Mesozoic and Early Cenozoic fishes of Africa. Fish and Fisheries 1 (2), 111–45.Google Scholar
Murray, A. M. 2004. Late Eocene and early Oligocene teleost and associated ichthyofauna of the Jebel Qatrani Formation, Fayum, Egypt. Palaeontology 47 (3), 711–24.Google Scholar
Mustafa, H. & Zalmout, I. 2002. Elasmobranchs from the late Eocene Wadi Esh-Shallala Formation of Qa’ Faydat ad Dahikiya, east Jordan. Tertiary Research 21 (1–4), 7794.Google Scholar
Nelson, J. S., Grande, T. & Wilson, M. V. H. 2016. Fishes of the World, 5th ed. Hoboken: John Wiley & Sons, 707 pp.Google Scholar
ODSN. 2011. Plate Tectonic Reconstruction Service. University of Bremen. Available at: http://www.odsn.de/odsn/services/paleomap/paleomap.html (accessed 22 August 2017).Google Scholar
Olson, S. L. 1985. The fossil record of birds. In Avian Biology, Vol. 8 (eds Farner, D. S., King, J. R. & Parkes, K. C.), pp. 79256. New York: Academic Press.Google Scholar
Oppel, M. 1811. Die ordnungen, familien und gattungen der reptilien als prodrom einer naturgeschichte derselben. München: Joseph Lindauer, 86 pp.Google Scholar
Otero, O., Pinton, A., Cappetta, H., Adnet, S., Valentin, X., Salem, M. & Jaeger, J.-J. 2015. A fish assemblage from the Middle Eocene from Libya (Dur At-Talah) and the earliest record of modern African fish genera. PLoS ONE 10 (12), e0144358.Google Scholar
Owen, R. 1841. XXI. Description of some Ophidiolites (Palæophis toliapicus) from the London Clay at Sheppey, indicative of an extinct species of Serpent. Transactions of the Geological Society of London Series 2 6 (1), 209–10.Google Scholar
Owen, R. 1870. On Dinornis (Part XIV), containing contributions to the craniology of the genus, with a description of a fossil cranium of Dasornis londinensis Ow., from the London Clay of Sheppey. Transactions of the Zoological Society of London 7, 123–50.Google Scholar
Parmley, D. & Devore, M. 2005. Palaeopheid snakes from the Late Eocene Hardie Mine local fauna of central Georgia. Southeastern Naturalist 4 (4), 703–22.Google Scholar
Pérez-García, A., de Lapparent de Broin, F. & Murelaga, X. 2017. The Erymnochelys group of turtles (Pleurodira, Podocnemididae) in the Eocene of Europe: New taxa and paleobiogeographical implications. Palaeontologia Electronica 20.1 (14A), 128.Google Scholar
Peters, S. E., Antar, M. S. M., Zalmout, I. & Gingerich, P. D. 2009. Sequence stratigraphic control on preservation of Late Eocene whales and other vertebrates at Wadi Al -Hitan, Egypt. PALAIOS 24 (5), 290302.Google Scholar
Peyer, B. 1928. Ergebnisse der forschungsreisen Prof. E. Stromers in den Wüsten Ägyptens. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Abteilung 32, 161.Google Scholar
Prasad, G. V. R. & de Lapparent de Broin, F. 2002. Late Cretaceous crocodile remains from Naskal (India): comparisons and biogeographic affinities. Annales de Paléontologie 88 (1), 1971.Google Scholar
Priem, F. 1899. Sur des poissons fossiles éocènes d'Egypte et de Roumanie et rectification relative à Pseudolates heberti Gervais sp. Bulletin de la Société Géologique de France, 3e série 27, 241–53.Google Scholar
Priem, F. 1914. Sur des vertébrés du Crétacé et de l'Eocène d'Egypte. Bulletin de la Société Géologique de France, 4e série 14, 366–82.Google Scholar
Prothero, D. R. 1994. The late Eocene-Oligocene extinctions. Annual Review of Earth and Planetary Sciences 22, 145–65.Google Scholar
Prothero, D. R. & Berggren, W. A. 1992. Eocene-Oligocene Climatic and Biotic Evolution: An Overview. Princeton: Princeton University Press.Google Scholar
Quintart, A. & Plisnier-Ladame, F. 1968. Eosphargis gigas (Owen, 1861). A propos d'une tortue géante récemment exposée dans les salles de l'IR.Sc.N.B. Les Naturalistes Belges 49 (7), 366–81.Google Scholar
Rafinesque, C. S. 1815. Analyse de la nature, ou tableau de l'univers et des corps organisés. Palerme: Jean Barravecchia, 224 pp.Google Scholar
Rage, J.-C. 1983 a. Palaeophis colossaeus nov. sp. (le plus grand Serpent connu?) de l'Eocène du Mali et le problème du genre chez les Palaeopheinae. Comptes Rendus des Séances de l'Académie des Sciences, série II 296 (2), 1741–4.Google Scholar
Rage, J.-C. 1983 b. Les serpents aquatiques de l’Éocène européen. Définition des espèces et aspects stratigraphiques. Bulletin du Muséum National d'Histoire Naturelle, 4e série, section C 5 (2), 213–41.Google Scholar
Rage, J.-C., Bajpal, S., Thewissen, J. G. M. & Tiwari, B. N. 2003. Early Eocene snakes from Kutch, Western India, with a review of the Palaeophiidae. Geodiversitas 25 (4), 695716.Google Scholar
Rage, J.-C. & Werner, C. 1999. Mid-Cretaceous (Cenomanian) snakes from Wadi Abu Hashim, Sudan: the earliest snake assemblage. Palaeontologia Africana 35, 85110.Google Scholar
Ratschiller, L. K. 1967. Sahara correlazioni geologico-lithostratigrafiche fra Sahara centrale ed occidentale con note geologiche generali e brevi cenni sulle possibilita petrolifere dell'Africa Nord-Occidentale. Memorie del Museo Tridentino di Scienze Naturali 14 (1), 55160.Google Scholar
Renous, S., de Lapparent de Broin, F., Depecker, M., Davenport, J. & Bels, V. 2007. Evolution of locomotion in aquatic turtles. In Biology of Turtles: From Structures to Strategies of Life (eds Wyneken, J., Godfrey, M. H. & Bels, V.), pp. 97138. Boca Raton: CRC Press.Google Scholar
Roger, J., Pickford, M., Thomas, H., de Lapparent de Broin, F., Tassy, P., Van Neer, W., Bourdillon De Grissac, C. & Al-Busaldi, S. 1994. Découverte de vertébrés fossiles dans le Miocène de la région du Huqf au Sultanat d'Oman. Annales de Paléontologie 80 (4), 253–73.Google Scholar
Rosen, D. E. 1973. Interrelationships of higher euteleostean fishes. In Interrelationships of Fishes (eds Greenwood, P., Miles, H. R. S. & Patterson, C.), pp. 397513. London: Academic Press.Google Scholar
Sagemehl, M. 1885. Beiträge zur vergleichenden Anatomie der Fische - III. Das Cranium der Characiniden nebst allgemeinen Bemerkungen über die mit einem Weber'schen Apparat versehenen Physostomenfamilien. Morphologisches Jahrbuch 10, ii+1–119.Google Scholar
Signeux, J. 1959. Poissons de l'Eocène de la cimenterie de Doumar (Syrie). Contributions à la Géologie de la Péninsule Arabique. Notes et Mémoires sur le Moyen-Orient 7, 241–8.Google Scholar
Solórzano, A. & Rincón, A. D. 2015. The earliest record (early Miocene) of a bony-toothed bird from South America and a reexamination of Venezuelan pelagornithids. Journal of Vertebrate Paleontology 35 (6), e995188.Google Scholar
Starks, E. C. 1910. The osteology and mutual relationships of the fishes belonging to the family Scombridæ. Journal of Morphology 21 (1), 7799.Google Scholar
Stehlin, H. G. 1909. Remarques sur les faunes de mammifères des couches éocènes et oligocènes du Bassin de Paris. Bulletin de la Société Géologique de France, 4e série 9, 488520.Google Scholar
Stidham, T. A. 2004. New skull material of Osteodontornis orri (Aves: Pelagornithidae) from the Miocene of California. PaleoBios 24 (2), 712.Google Scholar
Taverne, L. & Gayet, M. 2005. Phylogenetical relationships and paleozoogeography of the marine Cretaceous Tselfatiiformes (Teleostei, Clupeocephala). Cybium 29 (1), 6587.Google Scholar
Thomas, H., Roger, J., Sen, S., Dejax, J., Schuler, M., Al Sulaimani, Z., Bourdillon de Grissac, C., Breton, G., de Broin, F., Camoin, G., Carpetta, H., Carriol, R. P., Cavelier, C., Chaix, C., Crochet, J.-Y., Farjanel, G., Gayet, M., Gheerbrant, E., Lauriat-Rage, A., Noel, D., Pickford, M., Poignant, A. F., Rage, J.-C., Roman, J., Rouchy, J.-M., Secrétan, S., Sigé, B., Tassy, P. & Wenz, S. 1991. Essai de reconstitution des milieux de sedimentation et de vie des primates anthropoïdes de l'Oligocene de Taqah (Dhofar, Sultanat d'Oman). Bulletin de la Societe Geologique de France 162 (4), 713–24.Google Scholar
Thomas, H., Sen, S., Khan, M., Battail, B. & Ligabue, G. C. 1982. The Lower Miocene Fauna of Al-Sarrar (Eastern Province, Saudi Arabia). Chelonia. Atlal, Journal of Saudi Arabian Archaeology 5 (3), 109–36.Google Scholar
Tong, H., Buffetaut, E., Thomas, H., Roger, J., Halawani, M., Memesh, A. & Lebret, P. 1999. A new dermochelyid turtle from the Late Paleocene-Early Eocene of Saudi Arabia. Comptes Rendus de l'Académie des Sciences. Series IIA, Earth and Planetary Science 329 (12), 913–9.Google Scholar
Tyler, J. C. 2000. Arambourgthurus, a new genus of hypurostegic surgeonfish (Acanthuridae) from the Oligocene of Iran, with a phylogeny of the Nasinae. Geodiversitas 22 (4), 525–37.Google Scholar
Tyler, J. C., Johnson, G. D., Nakamura, I. & Collette, B. B. 1989. Morphology of Luvarus imperialis (Luvaridae), with a phylogenetic analysis of the Acanthuroidei (Pisces). Smithsonian Contributions to Zoology 485, 178.Google Scholar
Underwood, C. J., Ward, D. J., King, C., Antar, S. M., Zalmout, I. S. & Gingerich, P. D. 2011. Shark and ray faunas in the Middle and Late Eocene of the Fayum Area, Egypt. Proceedings of the Geologists’ Association 122 (1), 4766.Google Scholar
van Beneden, P. J. 1883. Note sur les ossements de Sphargis trouvés dans la terre à brique du Pays de Waas. Bulletin de la Classe des Sciences de l'Académie Royale de Belgique 6 (12), 322 (665–84).Google Scholar
von Meyer, H. 1847. Briefliche Mitteilungen an Professor Bronn. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 572–80.Google Scholar
von Rad, U., Ryan, W. B. F., Arthur, M. A., Cepek, P., Cita, M. B., Cornford, C., Garifal, L., Hamilton, N., Lopatin, B., Lutze, G. F., McCoy, F. W., Mountain, G., Sarnthein, M., Weser, O. E., Whelan, J. K. & Wind, F. H. 1979. Initial Reports of the Deep Sea Drilling Project. Washington: US Government Printing Office.Google Scholar
von Reinach, A. 1903. Schildkrötenreste aus dem ägyptischen Tertiär. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 29, 164.Google Scholar
Weems, R. E. & Knight, J. L. 2013. A new species of Bairdemys (Pelomedusoides: Podocnemididae) from the Oligocene (Early Chattian) Chandler Bridge Formation of South Carolina, USA, and its paleobiogeographic implications for the genus. In Morphology and Evolution of Turtles (eds Brinkman, D. B., Holroyd, P. A. & Gardner, J. D.), pp. 289303. Dordrecht: Springer Netherlands.Google Scholar
White, E. I. 1926. Eocene fishes from Nigeria. Geological Survey of Nigeria 10, 182.Google Scholar
White, E. I. 1934. Fossil fishes of Sokoto Province. Geological Survey of Nigeria 14, 178.Google Scholar
Wood, R. C., Johnson Gove, J., Gaffney, E. S. & Maley, K. F. 1996. Evolution and phylogeny of Leatherback Turtles (Dermochelyidae) with descriptions of new fossil taxa. Chelonian Conservation and Biology 2, 266–86.Google Scholar
Zachos, J. C., Dickens, G. R. & Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451 (7176), 279–83.Google Scholar
Zalmout, I., Antar, M. S. M., Abd-El Shafy, E., Metwally, M. H., Hatab, E.-B. E. & Gingerich, P. D. 2012. Priabonian sharks and rays (late Eocene: Neoselachii) from Minqar Tabaghbagh in the western Qattara Depression, Egypt. Contributions from the Museum of Paleontology, University of Michigan 32 (6), 7090.Google Scholar
Zalmout, I. & Gingerich, P. D. 2012. Late Eocene sea cows (Mammalia, Sirenia) from Wadi Al Hitan in the Western Desert of Fayum, Egypt. Papers on Paleontology - University of Michigan 37, 1–158+xiii.Google Scholar
Zouhri, S., Gingerich, P. D., Elboudali, N., Sebti, S., Noubhani, A., Rahali, M. & Meslouh, S. 2014. New marine mammal faunas (Cetacea and Sirenia) and sea level change in the Samlat Formation, Upper Eocene, near Ad-Dakhla in southwestern Morocco. Comptes Rendus Palevol 13 (7), 599610.Google Scholar
Zusi, R. L. & Warheit, K. I. 1992. On the evolution of intraramal mandibular joints in pseudodontorns (Aves: Odontopterygia). In Papers in Avian Paleontology Honoring Pierce Brodkorb (ed. Campbell, K. E.), pp. 351–60. Natural History Museum of Los Angeles County, Science Series 36.Google Scholar
Zvonok, E. A., Danilov, I. G. & Syromyatnikova, E. V. 2013. The first reliable record of fossil leatherback sea turtle (Dermochelyidae) in northern Eurasia (Middle Eocene of Ukraine). Paleontological Journal 47 (2), 199202.Google Scholar