Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:49:53.840Z Has data issue: false hasContentIssue false

Major and trace element geochemistry of the Neoproterozoic syn-glacial Fulu iron formation, South China

Published online by Cambridge University Press:  13 December 2016

LIANJUN FENG*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS), Beijing 100029, China
JING HUANG
Affiliation:
CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
DINGBIAO LU
Affiliation:
Guizhou Geological Survey, Guiyang 550002, China
QIRUI ZHANG
Affiliation:
Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
*
Author for correspondence: ljfeng@mail.iggcas.ac.cn

Abstract

The Fulu iron formation (IF) is an iron-rich unit in the Neoproterozoic glacial successions, South China. The major element data suggest that the iron sources of the Fulu IF are derived from binary mixing from hydrothermal and detrital loads. The Fulu IF is characterized by slightly positive Eu anomalies similar to other Neoproterozoic IFs, indicating that a high-temperature hydrothermal input may contribute little to Neoproterozoic IFs. A shift from non-existent to slightly negative Ce anomalies of the Fulu IF indicates that the IF precipitated across an iron chemocline separating a weakly oxic surface ocean from an oxygen-depleted deep ocean.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, G. J., Turner, E. C. & Kamber, B. S. 2012. A new depositional model for glaciogenic Neoproterozoic iron formation: insights from the chemostratigraphy and basin configuration of the Rapitan iron formation. Canadian Journal of Earth Sciences 49 (2), 455–76.CrossRefGoogle Scholar
Bau, M. 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochimica et Cosmochimica Acta 63 (1), 6777.CrossRefGoogle Scholar
Bau, M. & Dulski, P. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research 79 (1–2), 3755.Google Scholar
Bau, M. & Moller, P. 1993. Rare-earth element systematics of the chemically precipitated component in Early Precambrian iron formations and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochimica et Cosmochimica Acta 57 (10), 2239–49.Google Scholar
Bostrom, K. 1970. Submarine volcanism as a source for iron. Earth and Planetary Science Letters 9 (4), 348–54.CrossRefGoogle Scholar
Bostrom, K., Peterson, M. N., Joensuu, O. & Fisher, D. E. 1969. Aluminum-poor ferromanganoan sediments on active oceanic ridges. Journal of Geophysical Research 74 (12), 3261–70.Google Scholar
Bowring, S. A., Grotzinger, J. P., Condon, D. J., Ramezani, J., Newall, M. J. & Allen, P. A. 2007. Geochronologic constraints on the chronostratigraphic framework of the neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307 (10), 1097–145.Google Scholar
Cox, G. M., Halverson, G. P., Minarik, W. G., Le Heron, D. P., Macdonald, F. A., Bellefroid, E. J. & Strauss, J. V. 2013. Neoproterozoic iron formation: an evaluation of its temporal, environmental and tectonic significance. Chemical Geology 362, 232–49.Google Scholar
Cox, G. M., Halverson, G. P., Poirier, A., Le Heron, D., Strauss, J. V. & Stevenson, R. 2016. A model for Cryogenian iron formation. Earth and Planetary Science Letters 433, 280–92.Google Scholar
Danielson, A., Moller, P. & Dulski, P. 1992. The Europium anomalies in banded iron formations and the thermal history of the oceanic-crust. Chemical Geology 97 (1–2), 89100.CrossRefGoogle Scholar
De Carlo, E. H. & Wen, X. Y. 1997. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquatic Geochemistry 3 (4), 357–89.Google Scholar
Elderfield, H. & Greaves, M. J. 1982. The rare-earth elements in sea-water. Nature 296 (5854), 214–9.CrossRefGoogle Scholar
Elderfield, H., Hawkesworth, C. J., Greaves, M. J. & Calvert, S. E. 1981. Rare-earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochimica et Cosmochimica Acta 45 (4), 513–28.Google Scholar
Elrod, V. A., Berelson, W. M., Coale, K. H. & Johnson, K. S. 2004. The flux of iron from continental shelf sediments: A missing source for global budgets. Geophysical Research Letters 31 (12).CrossRefGoogle Scholar
Feng, L. J., Chu, X. L., Huang, J., Zhang, Q. R. & Chang, H. J. 2010. Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research 18 (4), 632–7.Google Scholar
Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. J. & Schilling, J. G. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems 14 (3), 489518.Google Scholar
Gurvich, E. G. 2006. Metalliferous Sediments of the World Ocean: Fundamental Theory of Deep-Sea Hydrothermal Sedimentation. Berlin: Springer.Google Scholar
Halverson, G. P., Poitrasson, F., Hoffman, P. F., Nedelec, A., Montel, J. M. & Kirby, J. 2011. Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth and Planetary Science Letters 309 (1–2), 100–12.Google Scholar
Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. 1998. A Neoproterozoic Snowball Earth. Science 281 (5381), 1342–6.CrossRefGoogle ScholarPubMed
Hoffman, P. F. & Schrag, D. P. 2002. The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14 (3), 129–55.Google Scholar
Kato, Y., Yamaguchi, K. E. & Ohmoto, H. 2006. Rare earth elements in Precambrian banded iron formations: secular changes of Ce and Eu anomalies and evolution of atmospheric oxygen. In Evolution of Early Earth's Atmosphere, Hydrosphere and Biosphere – Constraints from Ore Deposits (eds Kesler, S. E. & Ohmoto, H.), pp. 269–89. Geological Society of America Memoirs 198.Google Scholar
Klein, C. & Beukes, N. J. 1993. Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Economic Geology and the Bulletin of the Society of Economic Geologists 88 (3), 542–65.Google Scholar
Klein, C. & Ladeira, E. A. 2004. Geochemistry and mineralogy of neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the Urucum district, Mato Grosso do Sul, Brazil. Economic Geology 99 (6), 1233–44.Google Scholar
Koeppenkastrop, D. & Decarlo, E. H. 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles: an experimental approach. Chemical Geology 95 (3–4), 251–63.CrossRefGoogle Scholar
Lan, Z. W., Li, X. H., Zhang, Q. R. & Li, Q. L. 2015. Global synchronous initiation of the 2nd episode of Sturtian glaciation: SIMS zircon U-Pb and O isotope evidence from the Jiangkou Group, South China. Precambrian Research 267, 2838.CrossRefGoogle Scholar
Lan, Z. W., Li, X. H., Zhu, M. Y., Chen, Z. Q., Zhang, Q. R., Li, Q. L., Lu, D. B., Liu, Y. & Tang, G. Q. 2014. A rapid and synchronous initiation of the wide spread Cryogenian glaciations. Precambrian Research 255, 401–11.CrossRefGoogle Scholar
Lawrence, M. G. & Kamber, B. S. 2006. The behaviour of the rare earth elements during estuarine mixing- – revisited. Marine Chemistry 100 (1–2), 147–61.CrossRefGoogle Scholar
Le Hir, G., Ramstein, G., Donnadieu, Y. & Godderis, Y. 2008. Scenario for the evolution of atmospheric pCO(2) during a snowball Earth. Geology 36 (1), 4750.CrossRefGoogle Scholar
Li, C., Love, G. D., Lyons, T. W., Scott, C. T., Feng, L. J., Huang, J., Chang, H. J., Zhang, Q. R. & Chu, X. L. 2012. Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation, South China. Earth and Planetary Science Letters 331, 246–56.Google Scholar
Li, W. Q., Beard, B. L. & Johnson, C. M. 2015. Biologically recycled continental iron is a major component in banded iron formations. Proceedings of the National Academy of Sciences of the United States of America 112 (27), 8193–8.Google Scholar
Ling, H. F., Chen, X., Li, D., Wang, D., Shields-Zhou, G. A. & Zhu, M. Y. 2013. Cerium anomaly variations in Ediacaran – earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–27.Google Scholar
Macdonald, F. A., Schmitz, M. D., Crowley, J. L., Roots, C. F., Jones, D. S., Maloof, A. C., Strauss, J. V., Cohen, P. A., Johnston, D. T. & Schrag, D. P. 2010 a. Calibrating the Cryogenian. Science 327 (5970), 1241–3.CrossRefGoogle ScholarPubMed
Macdonald, F. A., Strauss, J. V., Rose, C. V., Dudas, F. O. & Schrag, D. P. 2010 b. Stratigraphy of the Port Nolloth Group of Namibia and South Africa and implications for the age of Neoproterozoic iron formations. American Journal of Science 310 (9), 862–88.Google Scholar
Marchig, V. & Gundlach, H. 1982. Iron-rich metalliferous sediments on the East-Pacific-Rise: prototype of undifferentiated metalliferous sediments on divergent plate boundaries. Earth and Planetary Science Letters 58 (3), 361–82.Google Scholar
Mclennan, S. M. 1989. Rare-earth elements in sedimentary-rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy 21, 169200.Google Scholar
Nance, W. B. & Taylor, S. R. 1976. Rare-earth element patterns and crustal evolution. 1. Australian post-Archean sedimentary rocks. Geochimica et Cosmochimica Acta 40 (12), 1539–51.Google Scholar
Nath, B. N., Roelandts, I., Sudhakar, M., Pluger, W. L. & Balaram, V. 1994. Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean. Marine Geology 120 (3–4), 385400.Google Scholar
Ohta, A. & Kawabe, I. 2001. REE(III) adsorption onto Mn dioxide (δ-MnO2) and Fe oxyhydroxide: Ce(III) oxidation by δ-MnO2 . Geochimica et Cosmochimica Acta 65 (5), 695703.CrossRefGoogle Scholar
Olivarez, A. M. & Owen, R. M. 1991. The Europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chemical Geology 92 (4), 317–28.Google Scholar
Piepgras, D. J. & Jacobsen, S. B. 1992. The behavior of rare-earth elements in seawater: precise determination of variations in the North Pacific Water Column. Geochimica et Cosmochimica Acta 56 (5), 1851–62.CrossRefGoogle Scholar
Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A. & Lyons, T. W. 2010. Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta 74 (22), 6387–405.Google Scholar
Rooney, A. D., Strauss, J. V., Brandon, A. D. & Macdonald, F. A. 2015. A Cryogenian chronology: two long-lasting synchronous Neoproterozoic glaciations. Geology 43 (5), 459–62.Google Scholar
Scholz, F., Severmann, S., Mcmanus, J. & Hensen, C. 2014. Beyond the Black Sea paradigm: The sedimentary fingerprint of an open-marine iron shuttle. Geochimica et Cosmochimica Acta 127, 368–80.Google Scholar
Severmann, S., Lyons, T. W., Anbar, A., Mcmanus, J. & Gordon, G. 2008. Modern iron isotope perspective on the benthic iron shuttle and the redox evolution of ancient oceans. Geology 36 (6), 487–90.Google Scholar
Sherrell, R. M., Field, M. P. & Ravizza, G. 1999. Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45ʹN, East Pacific Rise. Geochimica et Cosmochimica Acta 63 (11–12), 1709–22.Google Scholar
Slack, J. F., Grenne, T., Bekker, A., Rouxel, O. J. & Lindberg, P. A. 2007. Suboxic deep seawater in the late Paleoproterozoic: evidence from hematitic chert and iron formation related to seafloor-hydrothermal sulfide deposits, central Arizona, USA. Earth and Planetary Science Letters 255 (1–2), 243–56.CrossRefGoogle Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Palo Alto, CA: Blackwell Scientific.Google Scholar
Wang, J. & Li, Z. X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research 122 (1–4), 141–58.Google Scholar
Yan, B., Zhu, X. K., Tang, S. H. & Zhu, M. Y. 2010. Fe isotopic characteristics of the Neoproterozoic BIF in Guangxi Province and its implications. Acta Geologica Sinica 84 (7), 1080–6.Google Scholar
Zhang, Q.-R., Chu, X.-L. & Feng, L.-J. 2011. Neoproterozoic glacial records in the Yangtze Region, China. In The Geological Record of Neoproterozoic Glaciations (eds Arnaud, E., Halverson, G. P. & Shields-Zhou, Z.), pp. 357–66. Geological Society of London, Memoirs 36(1).Google Scholar
Zhang, J. & Nozaki, Y. 1996. Rare earth elements and yttrium in seawater: ICP-MS determinations in the East Caroline, Coral Sea, and South Fiji basins of the western South Pacific Ocean. Geochimica et Cosmochimica Acta 60 (23), 4631–44.Google Scholar