Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-25T23:14:29.779Z Has data issue: false hasContentIssue false

Late Jurassic, high Ba–Sr Linglong granites in the Jiaodong Peninsula, East China: lower crustal melting products in the eastern North China Craton

Published online by Cambridge University Press:  26 January 2017

LI-QIANG YANG*
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
YILDIRIM DILEK
Affiliation:
Department of Geology & Environmental Earth Science, Miami University, Oxford, OH 45056, USA
ZHONG-LIANG WANG
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
ROBERTO F. WEINBERG
Affiliation:
School of Earth, Atmosphere & Environment, Monash University, Victoria 3800, Australia
YUE LIU
Affiliation:
State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China School of Earth Sciences, The University of Melbourne, Victoria 3010, Australia
*
Author for correspondence: lqyang@cugb.edu.cn

Abstract

The Jurassic Linglong granites, intrusive into the North China Craton (NCC) in eastern China, provide a critical record of the first major episode of lithospheric-scale extension and magmatism in NE China during Mesozoic time. Our U–Pb zircon dating reveals that the Linglong granites were emplaced during 161–158 Ma, shortly after the inception of a shallow subduction of the Palaeo-Pacific plate beneath East Asia during Middle Jurassic time. These granites have high alkali contents (K2O + Na2O = 8–9 wt%), low MgO and Mg no. values and variable Cr–Ni abundances. Their relatively high Ba and Sr concentrations, relatively low heavy rare Earth element (HREE) and strongly fractionated REE patterns characterize them as high Ba–Sr granites. The negative whole-rock εNd(t) values ranging from −22.4 to −10.9 and wide-ranging zircon εHf(t) values of −39.1 to −1.5 suggest that magmas of the Linglong granites were produced by partial melting of a garnet-amphibolite-bearing lower crust of the Jiaobei Terrane and by re-melting of the Triassic ultrahigh-pressure (UHP) metamorphic rocks and alkaline suites of the Sulu Terrane. The occurrence in the granitic rocks of inherited zircons of the Neoarchaean, Palaeoproterozoic, Neoproterozoic, Palaeozoic and Triassic ages suggests that magmas of the Linglong granites interacted with the ancient crust in these terranes during their ascent. Asthenospheric upwelling, induced by the steepening and rapid rollback of the Palaeo-Pacific slab during Late Jurassic time, provided the heat source for the inferred lower crustal melting. Trench migration and thermal weakening of the crust caused extensional deformation and thinning in the eastern part of the NCC.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y., Lee, D. C. & Halliday, A. N. 2000. Early–Middle Archaean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–25.Google Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Calzia, J. P. & Rämö, O. T. 2000. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California. Geological Society of America Field Guides 2, 135164, doi: 10.1130/0-8137-0002-7.135.Google Scholar
Choi, S. G., Rajesh, V. J., Seo, J., Park, J. W., Oh, C. W., Pak, S. J. & Kim, S. W. 2009. Petrology, geochronology and tectonic implications of Mesozoic high Ba–Sr granites in the Haemi area, Hongseong Belt, South Korea. Island Arc 18, 266–81.CrossRefGoogle Scholar
Defant, M. F. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.CrossRefGoogle Scholar
Defant, M. F. & Drummond, M. S. 1993. Mount St Helens: Potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21, 547–50.Google Scholar
Deng, J. & Wang, Q. F. 2016. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Research 36, 219–74.Google Scholar
Deng, J., Wang, Q. F., Yang, L. Q., Zhou, L., Gong, Q. J., Yuan, W. M., Xu, H., Guo, C. Y. & Liu, X. W. 2008. The structure of ore-controlling strain and stress fields in the Shangzhuang gold deposit in Shandong province, China. Acta Geologica Sinica 82, 769–80.Google Scholar
Deng, J., Yang, L. Q., Ge, L. S., Wang, Q. F., Zhang, J., Gao, B. F., Zhou, Y. H. & Jiang, S. Q. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science 16, 777–84.Google Scholar
Dilek, Y. 2006. Collision tectonics of the Eastern Mediterranean region: Causes and consequences. In Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Dilek, Y. & Pavlides, S.), pp. 113. Geological Society of America, Special Paper no. 409.CrossRefGoogle Scholar
Dilek, Y. & Altunkaynak, S. 2007. Cenozoic crustal evolution and mantle dynamics of post-collisional magmatism in western Anatolia. International Geology Review 49, 431–53.Google Scholar
Dilek, Y., Altunkaynak, S. & Oner, Z. 2009. Syn-extensional Miocene granitoids in the Menderes core complex (Western Anatolia), and their role in the late Cenozoic extensional tectonics of the Aegean province. In Extending a Continent: Architecture, Rheology and Heat Budget (eds Ring, U. & Wernicke, B.), pp. 197223. Geological Society of London Special Publication no. 321.Google Scholar
Dilek, Y. & Moores, E. M. 1999. A Tibetan model for the Early Tertiary western United States. Journal of the Geological Society of London 156, 929–42.CrossRefGoogle Scholar
Dilek, Y. & Sandvol, E. 2009. Seismic structure, crustal architecture and tectonic evolution of the Anatolian-African plate boundary and the Cenozoic orogenic belts in the Eastern Mediterranean region. In Ancient Orogens and Modern Analogues (eds Murphy, J. B., Keppie, J. D. & Hynes, A. J.), pp. 127–60. Geological Society of London, Special Publication no. 327.Google Scholar
Dilek, Y. & Whitney, D. L. 2000. Cenozoic crustal evolution in central Anatolia: Extension, magmatism and landscape development. Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean, Geological Survey Department, September 1998, Nicosia, Cyprus, p. 183–92.Google Scholar
Fan, J. T. 1995. The petrogenesis of the spilite-keratophyre sequence of the Haizhou Group in Northern Jiangsu. Regional Geology of China 2, 118–24.Google Scholar
Fan, W. M., Guo, F., Wang, Y. J., Lin, G. & Zhang, M. 2001. Post-orogenic bimodal volcanism along the Sulu orogenic belt in eastern China. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 26, 733–46.CrossRefGoogle Scholar
Faure, M., Lin, W., Monie, P. & Bruguier, O. 2004. Paleoproterozoic arc magmatism and collision in Liaodong Peninsula (northeast China). Terra Nova 16, 7580.CrossRefGoogle Scholar
Fowler, M. B., Henney, P. J., Darbyshire, D. P.F. & Greenwood, P. B. 2001. Petrogenesis of high Ba–Sr granites: the Rogart pluton, Sutherland. Journal of the Geological Society 158, 521–34.Google Scholar
Fowler, M. B., Kocks, H., Darbyshire, D. P.F. & Greenwood, P. B. 2008. Petrogenesis of high Ba–Sr plutons from the northern highlands Terrane of the British Caledonian Province. Lithos 105, 129–48.Google Scholar
Gao, T. S., Chen, J. F., Xie, Z. & Qian, H. 2004. Geochemistry of Triassic igneous complex in the Sulu UHP metamorphic belt. Acta Petrologica Sinica 20, 1025–38 (in Chinese with English abstract).Google Scholar
Goss, S. C., Wilde, S. A., Wu, F. Y. & Yang, J. H. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos 120, 309–26.Google Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., van Achterbergh, E., O‘Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.CrossRefGoogle Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–69.Google Scholar
Guo, P., Santosh, M. & Li, S. R. 2013. Geodynamics of gold metallogeny in the Shandong Province, NE China: an integrated geological, geophysical and geochemical perspective. Gondwana Research 24, 1172–202.Google Scholar
Hildreth, W. & Moorbath, S. 1988. Crustal contributions to arc magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology 98, 455–89.CrossRefGoogle Scholar
Hoskin, P. W.O. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 2762.Google Scholar
Hou, M. L., Jiang, Y. H., Jiang, S. Y., Ling, H. F. & Zhao, K. D. 2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, East China: Implications for crustal thickening to delamination. Geological Magazine 144, 619–31.Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H., Zhou, L. & Yang, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. Journal of Analytical Atomic Spectrometry 27, 1391–99.Google Scholar
Jahn, B. M., Liu, D. Y., Wan, Y. S., Song, B. & Wu, J. S. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science 308, 232–69.CrossRefGoogle Scholar
Jiang, N., Chen, J. Z., Guo, J. H. & Chang, G. H. 2012. In situ zircon U–Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion. Lithos 142, 8494.Google Scholar
Jiang, Y. H., Jiang, S. Y., Ling, H. F. & Ni, P. 2010. Petrogenesis and tectonic implications of Late Jurassic shoshonitic lamprophyre dikes from the Liaodong Peninsula, NE China. Mineralogy and Petrology 100, 127–51.CrossRefGoogle Scholar
Laurent, A., Janousek, V., Magna, T., Schulmann, K. & Mikova, J. 2014. Petrogenesis and geochronology of a post-orogenic calc-alkaline magmatic association: the Žulová Pluton, Bohemian Massif. Journal of Geosciences 59, 415–40.Google Scholar
Li, S., Xiao, Y., Liu, D., Chen, Y., Ge, N., Zhang, Z., Sun, S., Cong, B., Zhang, R., Hart, S. R. & Wang, S. 1993. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes. Chemical Geology 109, 89111.CrossRefGoogle Scholar
Li, Z. X. & Li, X. H. 2007. Formation of the 1300 km-wide intra-continental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 35, 179–82.Google Scholar
Liu, F., Gerdes, A. & Liu, P. 2013. U–Pb, trace element and Lu–Hf properties of unique dissolution–reprecipitation zircon from UHP eclogite in SW Sulu terrane, eastern China. Gondwana Research 22, 169–83.CrossRefGoogle Scholar
Liu, J., Xu, Z., Liou, J. G. & Song, B. 2004. SHRIMP U–Pb ages of ultrahigh-pressure and retrograde metamorphism of gneisses, south-western Sulu terrane, eastern China. Journal of Metamorphic Geology 22, 315–26.Google Scholar
Liu, J. G., Tsujimori, T., Chu, W., Zhang, R. Y. & Wooden, J. L. 2006. Protolith andmetamorphic ages of the Haiyangsuo Complex, eastern China: a non-UHP exotic tectonic slab in the Sulu ultrahigh-pressure terrane. Mineralogy and Petrology 88, 207–26.Google Scholar
Liu, Y.S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication no. 4, 2532.Google Scholar
Lugmair, G.W. & Marti, K. 1978. Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters 39, 349–57.Google Scholar
Ma, L., Jiang, S. Y., Dai, B. Z., Jiang, Y. H., Hou, M. L., Pu, W. & Xu, B. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U–Pb geochronological, geochemical and Sr–Nd–Hf isotopic evidence. Lithos 162, 175–94.Google Scholar
Ma, L., Jiang, S. Y., Hofmann, A. W., Dai, B. Z., Hou, M. L., Zhao, K. D., Chen, L. H., Li, J. W. & Jiang, Y. H. 2014. Lithospheric and asthenospheric sources of lamprophyres in the Jiaodong Peninsula: A consequence of rapid lithospheric thinning beneath the North China Craton? Geochimica et Cosmochimica Acta 124, 250–71.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101, 635–43.Google Scholar
Maruyama, S., Isozaki, Y., Kimura, G. & Terabayashi, M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc 6, 121–42.Google Scholar
McDonough, W. F. & Sun, S. S. 1995. Composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
Meng, Q. R. 2003. What drove late Mesozoic extension of the northern China–Mongolia tract? Tectonophysics 369, 155–74.CrossRefGoogle Scholar
Middlemost, E. A. 1994. Naming materials in the magma/igneous rock system. Earth–Science Reviews 37, 215–24.Google Scholar
Miller, R. G. & O'Nions, R. K. 1985. Source of Precambrian chemical and clastic sediments. Nature 314, 325–30.Google Scholar
Moyen, J. F. 2009. High Sr/Y and La/Yb ratios: The meaning of the “adakitic signature”. Lithos 112, 556–74.CrossRefGoogle Scholar
Murray, B. P., Busby, C. & Verde Ramírez, M. A. 2015. Extension and magmatism in the Cerocahui basin, northern Sierra Madre Occidental, western Chihuahua, Mexico. International Geology Review 57 (5–8), 893918.CrossRefGoogle Scholar
Patino, D. A. E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas. In: Understanding Granites: Integrating New and Classical Techniques (eds Catro, A., Fernandez, C. & Vigneresse, J. L.), pp. 5575. Geological Society, London, Special Publication no. 168.Google Scholar
Peacock, S., McCann, C., Sothcott, J. & Astin, T. R. 1994. Experimental measurements of seismic attenuation in microfractured sedimentary rock. Geophysics 59, 1342–51.Google Scholar
Peng, T., Wilde, S. A., Fan, W. & Peng, B. 2013. Late Neoarchean potassic high Ba–Sr granites in the Taishan granite-greenstone terrane: Petrogenesis and implications for continental crustal evolution. Chemical Geology 344, 2341.Google Scholar
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491–521.CrossRefGoogle Scholar
Qian, Q., Chung, S.L, Lee, T. Y. & Wen, D. J. 2003. Mesozoic high-Ba–Sr granitoids from North China: geochemical characteristics and geological implications. Terra Nova 15, 272–8.Google Scholar
Qiu, Y. M., Groves, D. I., McNaughton, N. J., Wang, L. Z. & Zhou, T. H. 2002. Nature, age and tectonic setting of granitoid-hosted, orogenic gold deposits of the Jiaodong Peninsula, eastern North China craton, China. Mineralium Deposita 37, 283305.Google Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891931.Google Scholar
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Research 51, 125.Google Scholar
Ren, J., Tamaki, K., Li, S. & Zhang, J. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics 344, 175205.Google Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.Google Scholar
Seltmann, R., Konopelko, D., Biske, G., Divaev, F. & Sergeev, S. 2011. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. Journal of Asian Earth Sciences 42, 821–38.Google Scholar
Sen, C. & Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.Google Scholar
Shan, H. X., Zhai, M. G., Wang, F., Zhou, Y. Y., Santosh, M., Zhu, X. Y., Zhang, H. F. & Wang, W. 2015. Zircon U–Pb ages, geochemistry, and Nd–Hf isotopes of the TTG gneisses from the Jiaobei terrane: implications for Neoarchean crustal evolution in the North China Craton. Journal of Asian Earth Sciences 98, 6174.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, W., Ding, X., Hu, Y. H. & Li, X. H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Science Letters 262, 533–42.Google Scholar
Tang, J., Zheng, Y. F., Wu, Y. B., Gong, B. & Liu, X. 2007. Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: constraints on its tectonic affinity in the Sulu orogen. Precambrian Research 152, 4882.Google Scholar
Tang, J., Zheng, Y. F., Wu, Y. B., Gong, B., Liu, X. M. 2008. Zircon U–Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research 161, 389418.Google Scholar
Tarney, J. & Jones, C. E. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society 151, 855–68.Google Scholar
Tate, M. C. & Johnson, S. E. 2000. Subvolcanic and deep-crustal tonalite genesis beneath the Mexican Peninsular Ranges. Journal of Geology 108, 721–28.Google Scholar
Vervoort, J. D., Patchett, P. J., Gehrels, G. E. & Nulman, A. P. 1996. Constraints on early Earth differentiation from hafnium and neodymium isotopes. Nature 379, 624–27.Google Scholar
Wan, Y. S., Song, B., Liu, D. Y., Wilde, S. A., Wu, J. S., Shi, Y. R., Yin, X. Y. & Zhou, H. Y. 2006. SHRIMP U–Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton: evidence for a major Late Palaeoproterozoic tectonothermal event. Precambrian Research 149, 249–71.Google Scholar
Wang, K.-L., Chung, S.-L., O'Reilly, S. Y., Sun, S.-S., Shinjo, R. & Chen, C.-W. 2004. Geochemical constraints for the genesis of post-collisional magmatism and the geodynamic evolution of the northern Taiwan region. Journal of Petrology 45 (5), 9751011, doi: 10.1093/petrology/egh001.Google Scholar
Wang, L. G., Qiu, Y. M., McNaughton, N. J., Groves, D. I., Luo, Z. K., Huang, J. Z. & Liu, Y. K. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U–Pb zircon studies of granitoids. Ore Geology Reviews 13, 275–91.Google Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Zhao, Z. H., Jian, P., Xiong, X. L., Bao, Z. W., Li, C. F. & Bai, Z. H. 2006. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu–Au mineralization. Lithos 89, 424–46.Google Scholar
Wang, T., Zheng, Y., Zhang, J., Zeng, L., Donskaya, T., Guo, L. & Li, J. 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes. Tectonics 30, TC6007, https://doi.org/10.1029/2011TC002896.Google Scholar
Wang, Z. L., Yang, L. Q., Deng, J., Santosh, M., Zhang, H. F., Liu, Y., Li, R. H., Huang, T., Zheng, X. L. & Zhao, H. 2014. Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting. Journal of Asian Earth Sciences 95, 274–99.Google Scholar
Wu, F. Y., Li, X. H., Zheng, Y. F. & Gao, S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica 23, 185220.Google Scholar
Wu, F. Y., Lin, J. Q., Wilde, S. A., Zhang, X. & Yang, J. H. 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth & Planetary Science Letters 233, 103–19.Google Scholar
Xie, S. W., Gao, S., Liu, X. M. & Gao, R. S. 2009. U–Pb ages and Hf isotopes of detrital zircons of Nanhua sedimentary rocks from the Yangtze Gorges: implications for genesis of Neoproterozoic magmatism in South China. Earth Science 34, 117–26.Google Scholar
Yang, J. H., Chu, M. F., Liu, W. & Zhai, M. G. 2003. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China. Acta Petrologica Sinica 19 (4), 692700 (in Chinese with English abstract).Google Scholar
Yang, J. H., Chung, S. L., Wilde, S. A., Wu, F. Y., Chu, M. F., Lo, C. H. & Fan, H. R. 2005 a. Petrogenesis of post-orogenic syenites in the Sulu orogenic belt, East China: geochronological, geochemical and Nd–Sr isotopic evidence. Chemical Geology 214, 99125.Google Scholar
Yang, J. H., Wu, F. Y., Chung, S. L., Wilde, S. A., Chu, M. F., Lo, C. H. & Song, B. 2005b. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, east China and their relationship to lithospheric thinning. Chemical Geology 222, 200–31.Google Scholar
Yang, K. F., Fan, H. R., Santosh, M., Hu, F. F., Wilde, S. A., Lan, T. G., Lu, L. N. & Liu, Y. S. 2012. Reactivation of the Archean lower crust: implications for zircon geochronology, elemental and Sr–Nd–Hf isotopic geochemistry of late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos 146, 112–27.Google Scholar
Yang, L. Q., Deng, J., Dilek, Y., Qiu, K. F., Ji, X. Z., Li, N., Taylor, R. D. & Yu, J. Y. 2015. Structure, geochronology, and petrogenesis of the Late Triassic Puziba granitoid dikes in the Mianlue Suture Zone, Qinling Orogen, China. Geological Society of America Bulletin 127, 1831–54.CrossRefGoogle Scholar
Yang, L. Q., Deng, J., Goldfarb, R. J., Zhang, J., Gao, B. F. & Wang, Z. L. 2014 a. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: new implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research 25, 1469–83.Google Scholar
Yang, L. Q., Deng, J., Guo, L. N., Wang, Z. L., Li, X. Z. & Li, J. L. 2016 a. Origin and evolution of ore fluid, and gold deposition processes at the giant Taishang gold deposit, Jiaodong Peninsula, eastern China. Ore Geology Reviews 72, 582602.Google Scholar
Yang, L. Q., Deng, J., Guo, R. P., Guo, L. N., Wang, Z. L., Chen, B. H. & Wang, X. D. 2016 b. World-class Xincheng gold deposit: An example from the giant Jiaodong Gold Province. Geoscience Frontiers 7 (3), 419–30, doi.10.1016/j.gsf.2015.08.006.Google Scholar
Yang, L. Q., Deng, J., Wang, Z. L., Guo, L. N., Li, R. H., Groves, D. I., Danyushevskiy, L., Zhang, C., Zheng, X. L. & Zhao, H. 2016c. Relationships between gold and pyrite at the Xincheng gold deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment. Economic Geology 111 (1), 105–26.Google Scholar
Yang, Q. Y., Santosh, M., Shen, J. F. & Li, S. R. 2014b. Juvenile vs. recycled crust in NE China: Zircon U–Pb geochronology, Hf isotope and an integrated model for Mesozoic gold mineralization in the Jiaodong Peninsula. Gondwana Research 25, 1445–68.Google Scholar
Ye, H. M., Li, X. H., Li, Z. X. & Zhang, C. L. 2008. Age and origin of high Ba–Sr appinite-granites at the northwestern margin of the Tibet Plateau: implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt. Gondwana Research 13, 126–38.Google Scholar
Zhang, F.-Q., Chen, H.-L., Batt, G. E., Dilek, Y., A, M.-N., Sun, M.-D., Yang, S.-F., Meng, Q.-A. & Zhao, X.-Q. 2015. Detrital zircon U–Pb geochronology and stratigraphy of the Cretaceous Sanjiang Basin in NE China: Provenance record of an abrupt tectonic switch in the mode and nature of the NE Asian continental margin evolution. Tectonophysics 665, 5878.Google Scholar
Zhang, F. Q., Chen, H. L., Yu, X., Dong, C. W., Yang, S. F., Pang, Y. M. & Bat, G. E. 2011. Early Cretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamic implication. Gondwana Research 19, 163–76.Google Scholar
Zhang, H. F. 2007. Temporal and spatial distribution of Mesozoic mafic magmatism in the North China craton and implications for secular lithospheric evolution. In Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia (eds Zhai, M. G., Windley, B. F., Kusky, T. M. & Meng, Q. R. , Q. R.), pp. 3554. Geological Society of London, Special Publication no. 280.Google Scholar
Zhang, H. F., Sun, M., Lu, F. X., Zhou, X. H., Zhou, M. F., Liu, Y. S. & Zhang, G. H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze craton, southern China. Geochemical Journal 35, 315–31.Google Scholar
Zhang, J., Zhao, Z. F., Zheng, Y. F. & Dai, M. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos 119, 512–36.Google Scholar
Zhang, S. B., Zheng, Y. F., Wu, Y. B., Zhao, Z. F., Gao, S. & Wu, F. Y. 2006. Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China. Earth & Planetary Science Letters 252, 5671.Google Scholar
Zheng, Y. F. 2008. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin 53, 3081–104.Google Scholar
Zhou, J. B., Wilde, S. A., Liu, F. L. & Han, J. 2012. Zircon U–Pb and Lu–Hf isotope study of the Neoproterozoic Haizhou Group in the Sulu orogen: Provenance and tectonic implications. Lithos 136–9, 261–81.Google Scholar
Zhou, X. M. & Li, W. X. 2000. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 326, 269–87.Google Scholar
Zhu, Y. F., Sun, S., Gu, L., Ogasawara, Y., Jiang, N. & Honma, H. 2001. Permian volcanism in the Mongolian orogenic zone, northeast China: geochemistry, magma sources and petrogenesis. Geological Magazine 138, 101–15.Google Scholar
Supplementary material: File

Yang supplementary material

Yang supplementary material 1

Download Yang supplementary material(File)
File 11.3 KB
Supplementary material: File

Yang supplementary material

Tables S1-S2

Download Yang supplementary material(File)
File 78.5 KB