Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T19:08:46.268Z Has data issue: false hasContentIssue false

The late Aeronian graptolite sedgwickii Event, associated positive carbon isotope excursion and facies changes in the Prague Synform (Barrandian area, Bohemia)

Published online by Cambridge University Press:  01 June 2012

PETR ŠTORCH*
Affiliation:
Institute of Geology, Academy of Sciences of the Czech Republic, Rozvojová 135, Praha 6, 165 00, Czech Republic
JIŘÍ FRÝDA
Affiliation:
Faculty of Environmental Sciences, Czech University of Life Sciences, Kamýcká 129, Praha 6, 165 21, Czech Republic Czech Geological Survey, Klárov 3/131, Praha 1, 118 21, Czech Republic
*
Author for correspondence: storch@gli.cas.cz

Abstract

Study of the lower Silurian black shale succession of the Prague Synform has enabled detailed insight into graptolite faunal dynamics and diversity trends from the mid-Aeronian diversity maximum through to the late Aeronian crisis. Graptolite diversity decreased from 33 taxa in the Lituigraptus convolutus Biozone to 17 taxa in the upper part of the Stimulograptus sedgwickii Biozone and newly erected Lituigraptus rastrum Biozone. The graptolite assemblages of the latter biozones exhibit low species richness along with high dominance. Many graptolite species that became extinct in the early part of the sedgwickii Zone were promptly replaced by new forms. In the later part of the sedgwickii Zone, however, replacement of extinct species by new forms considerably decelerated. The increased rate of graptolite extinction recorded in the convolutus–sedgwickii biozone boundary beds coincided with subtle changes in black shale lithologies and a positive shift in δ13Corg (of 2.2 ‰) compared to baseline values. Sea-level drawdown can be inferred from siltstones and/or temporary nondeposition in the middle sedgwickii Zone. This level also sees total organic carbon (TOC) fluctuations and a strong positive δ13Corg excursion with a peak shift of at least 7 ‰. The sedgwickii Event exhibits substantial reorganization of the graptolite fauna, its taxonomic impoverishment and concomitant increase in species dominance rather than a sudden collapse of the pre-extinction assemblage. Associated changes in lithology, TOC and the pronounced δ13Corg excursion suggest a relatively extended and probably multi-phase period of stressed conditions that affected the pelagic realm inhabited by graptolites in the course of the late Aeronian interval.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bjerreskov, M. 1975. Llandoverian and Wenlockian graptolites from Bornholm. Fossils and Strata 8, 194.Google Scholar
Bouček, B. 1930. O stratigrafických poměrech pásma eα “kolonie Lapworth” u Zdic. Časopis Národního Muzea 104, 8897.Google Scholar
Bouček, B. 1934. Bemerkungen zur Stratigraphie des böhmischen Gotlandien und seinen Faziesverhältnissen. Zentralblatt für Geologie und Paläontologie, Abt. B 11, 477–94.Google Scholar
Bouček, B. 1953. Biostratigraphy, development and correlation of the Želkovice and Motol Beds of the Silurian of Bohemia. Sborník Ústředního ústavu geologického, Oddil Paleontologický 20, 421–84.Google Scholar
Caputo, M. V. 1998. Ordovician–Silurian glaciations and global sea-level changes. In Silurian Cycles: Linkages of Dynamic Processes in the Atmosphere and Oceans (eds Landing, E. & Johnson, M. E.), pp. 1525. New York State Museum Bulletin no. 491.Google Scholar
Chen, X., Melchin, M. J., Sheets, H. D., Mitchell, C. E. & Fan, J.-X. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China. Journal of Paleontology 79, 842–61.Google Scholar
Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z. & Štorch, P. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Prague: Czech Geological Survey, 183 pp.Google Scholar
Díaz-Martínez, E. & Grahn, Y. 2007. Early Silurian glaciation along the western margin of Gondwana (Peru, Bolivia and northern Argentina): palaeogeographic and dynamic setting. Palaeogeography, Palaeoclimatology, Palaeoecology 245, 6281.Google Scholar
Díaz-Martínez, E., Vavrdová, M., Isaacson, P. & Grahn, C. Y. 2011. Early Silurian vs. Late Ordovician glaciation in South America. In Ordovician of the World (eds Gutiérrez-Marco, J. C., Rábano, I. & García-Bellido, D.), pp. 371–8. Cuadernos del Museo Geominero 14. Madrid: Instituto Geológico y Minero de España.Google Scholar
Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Sweet, W. C., Jacobsen, S. R., Soufiane, A., Achab, A. & Noble, P. J. 1999. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology 27, 215–18.Google Scholar
Grahn, Y. & Caputo, M. V. 1992. Early Silurian glaciations in Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 115.Google Scholar
Gutiérrez-Marco, J. C. & Štorch, P. 1998. Graptolite biostratigraphy of the lower Silurian (Llandovery) shelf deposits of the Western Iberian Cordillera, Spain. Geological Magazine 135, 7192.Google Scholar
Hammer, Ø., Harper, D. A. T., & Ryan, P. D. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4 (1), 9 pp.Google Scholar
Havlíček, V. 1977. Brachiopods of the Order Orthida in Czechoslovakia. Rozpravy Ústředního Ústavu geologického 44, 1327.Google Scholar
Hutt, J. E. 1974. The Llandovery graptolites of the English Lake District. Part 1. Monograph of the Palaeontographical Society 128 (540), 156.Google Scholar
Jaeger, H. 1991. Neue Standard-Graptolithenzonenfolge nach der “Grossen Krise” an der Wenlock/Ludlow Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 182, 303–54.Google Scholar
Jaeger, H. & Robardet, M. 1979. Le Silurien et le Devonien basal dans le Nord de la Province de Séville (Espagne). Géobios 12, 687714.Google Scholar
Johnson, M. E. 1996. Stable cratonic sequences and a standard for Silurian eustasy. In Paleozoic Sequence Stratigraphy: Views From the North American Craton (eds Witzke, B. J., Ludvigson, G. A. & Day, J.), pp. 203–11. Geological Society of America Special Paper, no. 306.Google Scholar
Jones, O. T. & Pugh, W. J. 1916. The geology of the district around Machynlleth and the Llyfnant Valley. Quarterly Journal of the Geological Society of London 71, 343–85.Google Scholar
Kaljo, D. & Martma, T. 2000. Carbon isotopic composition of Llandovery rocks (East Baltic Silurian) with environmental interpretation. Proceedings of the Estonian Academy of Sciences, Geology 49, 267–83.Google Scholar
Kaljo, D., Martma, T., Männik, P. & Viira, V. 2003. Implications of Gondwana glaciations in the Baltic late Ordovician and Silurian and a carbon isotopic test of environmental cyclicity. Bulletin de la Société Géologique de France 174, 5966.Google Scholar
Koren’, T. N. 1987. Graptolite dynamics in Silurian and Devonian time. Bulletin of the Geological Society of Denmark 35, 149–59.Google Scholar
Koren’, T. N. 1991 a. Evolutionary crisis of the Ashgill graptolites. In Advances in Ordovician Geology (eds Barnes, C. R. & Williams, S. H.), pp. 157–64. Geological Survey of Canada, Paper 90–9.Google Scholar
Koren’, T. N. 1991 b. The lundgreni extinction event in central Asia and its bearing on graptolite biochronology within the Homerian. Proceedings of the Estonian Academy of Science, Geology 40, 74–8.Google Scholar
Koren’, T. N. 1993. Main event levels in the evolution of the Ludlow graptolites. Stratigraphy, Geological Correlation 1, 4452 [in Russian].Google Scholar
Kraft, J. 1982. Dendroid graptolites of Llandoverian age from Hýskov near Beroun (Barrandian). Sborník Geologických věd, Paleontologie 25, 8395.Google Scholar
Kříž, J. 1975. Revision of the Lower Silurian stratigraphy in central Bohemia. Věstník Ústředního Ústavu Geologického 50, 275–83.Google Scholar
Lapworth, C. 1878. The Moffat Series. Quarterly Journal of the Geological Society of London 34, 240346.Google Scholar
Lécuyer, C. & Paris, F. 1997. Variability in the δ13C of lower Palaeozoic palynomorphs: implications for the interpretation of ancient marine sediments. Chemical Geology 138, 161–70.Google Scholar
Leggett, J. K., McKerrow, W. S., Cocks, L. R. M. & Rickards, R. B. 1981. Periodicity in the early Palaeozoic marine realm. Journal of the Geological Society, London 138, 139–56.Google Scholar
Lenz, A. C. 1993. Late Wenlock-Ludlow (Silurian) graptolite extinction, evolution, and biostratigraphy: perspectives from Arctic Canada. Canadian Journal of Earth Sciences 30, 491–8.Google Scholar
Lenz, A. C., Noble, P. J., Masiak, M., Poulson, S. R. & Kozlowska, A. 2006. The lundgreni Extinction Event: integration of paleontological and geochemical data from Arctic Canada. GFF 128, 153–8.Google Scholar
Loydell, D. K. 1991 a. The biostratigraphy and formational relationships of the upper Aeronian and lower Telychian (Llandovery, Silurian) formations of western mid-Wales. Geological Journal 26, 209–44.Google Scholar
Loydell, D. K. 1991 b. Dob's Linn – the type locality of the Telychian (Upper Llandovery) Rastrites maximus Biozone? Newsletters on Stratigraphy 25, 155–61.Google Scholar
Loydell, D. K. 1992. Upper Aeronian and lower Telychian (Llandovery) graptolites from western Mid-Wales, Part 1. Monograph of the Palaeontographical Society 146 (589), 155.Google Scholar
Loydell, D. K. 1993. Upper Aeronian and lower Telychian (Llandovery) graptolites from western Mid-Wales, Part 2. Monograph of the Palaeontographical Society 147 (592), 55180.Google Scholar
Loydell, D. K. 1994. Early Telychian changes in graptoloid diversity and sea level. Geological Journal 29, 355–68.Google Scholar
Loydell, D. K. 1998. Early Silurian sea-level changes. Geological Magazine 135, 447–71.Google Scholar
Loydell, D. K. 2007. Early Silurian positive δ13C excursions and their relationship to glaciations, sea-level changes and extinction events. Geological Journal 42, 531–46.CrossRefGoogle Scholar
Loydell, D. K. 2012. Graptolite biozone correlation charts. Geological Magazine 149, 124–32.Google Scholar
Melchin, M. J. 1994. Graptolite extinction at the Llandovery-Wenlock boundary. Lethaia 27, 285–90.Google Scholar
Melchin, M. J. 2007. Biostratigraphic and paleobiogeographic significance of some Aeronian (Lower Silurian) graptolites from the Arisaig Group, Nova Scotia, Canada. Acta Palaeontologica Sinica 46 (Suppl.), 311–9.Google Scholar
Melchin, M. J. & Holmden, C. 2006. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada: implications for global correlation and sea-level change. GFF 128, 173–80.Google Scholar
Melchin, M. J., Koren’, T. N. & Štorch, P. 1998. Global diversity and survivorship patterns of Silurian graptoloids. In Silurian Cycles: Linkages of Dynamic Processes in the Atmosphere and Oceans (eds Landing, E. & Johnson, M. E.), pp. 165–82. New York State Museum Bulletin 491.Google Scholar
Melchin, M. J., MacRae, K.-D., Frýda, J., Štorch, P. & Bullock, P. 2011. A multiple carbon isotope excursion in the upper Aeronian Stimulograptus sedgwickii Biozone. In Siluria Revisited: Programme and Abstracts, Meeting of the International Subcommission on Silurian Stratigraphy, Ludlow, England, July 10–15, 2011 (ed. Loydell, D.), 46 pp.Google Scholar
Melchin, M. J. & Mitchell, C. E. 1991. Late Ordovician extinction in the Graptoloidea. In Advances in Ordovician Geology (eds Barnes, C. R. & Williams, S. H.), pp. 143–56. Geological Survey of Canada, Paper 90–9.Google Scholar
Nicholson, H. A. 1868. On the graptolites of the Coniston Flags; with notes on the British species of the genus Graptolites. Quarterly Journal of the Geological Society of London 24, 521–45.Google Scholar
Pannell, C. L., Clarkson, E. N. K. & Zalasiewicz, J. 2006. Fine-scale biostratigraphy within the Stimulograptus sedgwickii Zone (Silurian: Llandovery) at Dob's Linn, Southern Scotland. Scottish Journal of Geology 42, 5964.Google Scholar
Portlock, J. E. 1843. Report on the Geology of the Country of Londonderry, and Parts of Tyrone and Fermanagh. Dublin, London, 774 pp.Google Scholar
Přibyl, A. & Münch, A. 1943. Revise středoevropských zástupců rodu Demirastrites Eisel. Rozpravy České Akademie věd a Umění, Třída II, 51 (31), 129.Google Scholar
Rickards, R. B. 1970. The Llandovery (Silurian) graptolites of the Howgill Fells, Northern England. Monograph of the Palaeontographical Society 123 (524), 1108.Google Scholar
Rickards, R. B. 1976. The sequence of Silurian graptolite zones in the British Isles. Geological Journal 11, 153–88.Google Scholar
Schauer, M. 1967. Biostratigraphie und Taxionomie von Rastrites (Pterobranchia, Graptolithina) aus dem anstehenden Silur Ostthüringens und des Vogtlandes. Freiberger Forschungshefte, Reihe C 213, 171–99.Google Scholar
Schauer, M. 1971. Biostratigraphie und Taxionomie des tieferen Silurs unter besonderer Berücksichtigung der tektonischen Deformation. Freiberger Forschungshefte, Reihe C 373, 1185.Google Scholar
Schieber, J. 2003. Simple gifts and buried treasures – implications of finding bioturbation and erosion surfaces in black shales. The Sedimentary Record 1 (2), 48.Google Scholar
Šnajdr, M. 1978. Llandoverian trilobites from Hýskov (Barrandian area). Sborník geologických věd, Paleontologie 21, 747.Google Scholar
Štorch, P. 1994. Graptolite biostratigraphy of the Lower Silurian (Llandovery and Wenlock) of Bohemia. Geological Journal 29, 137–65.Google Scholar
Štorch, P. 1995. Biotic crises and post-crisis recoveries recorded by Silurian planktonic graptolite faunas of the Barrandian area (Czech Republic). In Evolution and Extinctions (eds Čejchan, P., Hladil, J. & Štorch, P.), 5970. Geolines 3.Google Scholar
Štorch, P. 1998. Graptolites of the Pribylograptus leptotheca and Lituigraptus convolutus biozones of Tmaň (Silurian, Czech Republic). Journal of the Czech Geological Society 43, 209–72.Google Scholar
Štorch, P. 2001. Graptolites, stratigraphy and depositional setting of the middle Llandovery (Silurian) volcanic-carbonate facies at Hýskov (Barrandian area, Czech Republic). Bulletin of the Czech Geological Survey 76, 5576.Google Scholar
Štorch, P. 2006. Facies development, depositional settings and sequence stratigraphy across the Ordovician-Silurian boundary: a new perspective from the Barrandian area of the Czech Republic. Geological Journal 41, 163–92.Google Scholar
Štorch, P., Černý, J., Bohátka, J. & Melichar, R. 2009. Ražba tunelů silničního obchvatu Prahy mezi Lochkovem a Radotínem – výsledky geologicko-paleontologického výzkumu. Český Kras 35, 513 [In Czech with English résumé].Google Scholar
Štorch, P., Gutiérrez-Marco, J. C., Sarmiento, G. N. & Rábano, I. 1998. Upper Ordovician and Lower Silurian of Corral de Calatrava, southern part of the Central Iberian Zone. In Proceedings of the Sixth International Graptolite Conference of the GWG (IPA) and the SW Iberia Field Meeting 1998 of the International Subcommission on Silurian Stratigraphy (ICS-IUGS) (eds Gutiérrez-Marco, J. C. & Rábano, I.), pp. 319–25. Temas Gológico-Mineros ITGE 23.Google Scholar
Štorch, P., & Massa, D. 2003. Biostratigraphy, correlation, environmental and biogeographic interpretation of the lower Silurian graptolite faunas of Libya. In The Geology of Northwest Libya, Vol. 1 (eds Salem, M. J. & Oun, K. M.), pp. 237–51.Google Scholar
Štorch, P. & Massa, D. 2006. The mid-Llandovery (Aeronian) graptolite fauna of western Murzuq Basin and Al Qarqaf Arch (south-western Libya). Palaeontology 49, 83112.Google Scholar
Štorch, P., Mitchell, C. E., Finney, S. C. & Melchin, M. J. 2011. Uppermost Ordovician (upper Katian–Hirnantian) graptolites of north-central Nevada, USA. Bulletin of Geosciences 86, 301–86.Google Scholar
Toghill, P. 1968. The graptolite assemblages and zones of the Birkhill Shales (Lower Silurian) at Dob's Linn. Palaeontology 11, 654–68.Google Scholar
Törnquist, S. L. 1907. Observations on the genus Rastrites and some allied species of Monograptus . Lunds Universitets Arsskrifter, Afd. 2 3 (5), 122.Google Scholar
Urbanek, A. 1993. Biotic crises in the history of upper Silurian graptoloids: a palaeobiological model. Historical Biology 7, 2950.Google Scholar
Williams, M., Zalasiewicz, J., Rushton, A. W. A., Loydell, D. K. & Barnes, R. P. 2003. A new, stratigraphically significant Torquigraptus species (Silurian graptolite) from the Southern Uplands Terrane. Scottish Journal of Geology 39, 1728.Google Scholar
Zalasiewicz, J. A., Taylor, L., Rushton, W. A., Loydell, D. K., Rickards, R. B. & Williams, M. 2009. Graptolites in British stratigraphy. Geological Magazine 146, 785850.Google Scholar