Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T09:58:40.777Z Has data issue: false hasContentIssue false

Ignimbrite correlation using whole-rock geochemistry: an example from the Sulcis (SW Sardinia, Italy)

Published online by Cambridge University Press:  13 May 2016

GUILLEM GISBERT*
Affiliation:
Instituto de Geofísica, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Ciudad Universitaria, Delegación Coyoacán, CP 04510, México DF, Mexico
DOMINGO GIMENO
Affiliation:
Universitat de Barcelona, Facultat de Geologia, C/Martí i Franquès s/n, 08028 Barcelona, Spain
*
Author for correspondence: ggisbertp@hotmail.com

Abstract

Ignimbrites are useful chronological markers in the geological record at local and regional scales. They also provide information on the dynamics of the eruption that produced them, making their study of great importance in terms of volcanic hazard assessment. However, their study is usually hampered by their lateral variation and discontinuity. When stratigraphic and lithologic criteria are not sufficient for correlation purposes, the use of multiple complementary correlation tools may be necessary to correctly determine their areal extension, volume and facies variations. Whole-rock geochemistry is considered one of the less reliable correlation techniques due to the pyroclastic nature of these deposits and their emplacement dynamics. These may introduce vertical and horizontal geochemical heterogeneity in the final deposit. In addition, the occurrence of zoned ignimbrites due to magma supply of changing composition is common. In this work we show that, if appropriately used, whole-rock geochemistry can be a valid and highly useful tool for ignimbrite correlation. We provide an example from the study of an ignimbrite sequence containing 18 units (sensu lato) in the Sulcis region (SW Sardinia, Italy). A protocol has been developed for unit recognition based on successive simple binary diagrams where the whole-rock composition of a problem sample can be plotted. Immobile trace elements have been preferentially used to minimize effects of element mobilization associated with alteration and weathering. The diagrams provided here are designed for the Sulcis, but the methodology followed to develop them may be applied to other study areas.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araña, V., Barberi, F. & Santacroce, R. 1974. Some data on the comendite type area of S. Pietro and S. Antioco Islands, Sardinia. Bulletin Volcanologique 38, 725–36.Google Scholar
Assorgia, A., Cincotti, F., Fadda, A., Gimeno Torrente, D., Morra, V., Ottelli, L. & Secchi, F. A. 1992a. Caratteri vulcanologici e petrografici delle succession ‘ignimbritiche’ terziarie del Sulcis (Sardegna sud-occidentale), Riunione Scientifica. Ignimbriti Cenozoiche Sarde. Progetti Nazionale Murst 40%. Guida alle escursioni sui depositi piroclastici cenozoici sardi. Riconstruzione della storia evolutiva dei vulcani. Genesi ed evoluzione del magmatismo. Rapporti tra vulcanismo e tettonica. Sardegna, 9–12 Giugno 1992, pp. 31–60.Google Scholar
Assorgia, A., Cincotti, F., Fadda, A., Gimeno Torrente, D., Morra, V., Ottelli, L. & Secchi, F. A. 1994. Il Complesso comenditico miocenico dell'entroterra Sulcitano (Sardegna sud-occidentale). Caratteri geologici, vulcanologici e petrochimici. Memorie Descrittive della Carta Geologica d'Italia 49, 347–62.Google Scholar
Assorgia, A., Fadda, A., Gimeno, D., Morra, V., Ottelli, L., Pujolriu, L. & Secchi, F. A. 1992b. Tectono-sedimentary evolution of the Upper Tertiary volcanic succession of Sulcis area (SW Sardinia, Italy). Paleontologia i Evolució 24–25, 307–20.Google Scholar
Assorgia, A., Fadda, A., Gimeno Torrente, D., Morra, V., Ottelli, L. & Secchi, F. A. 1990a. Le successioni ignimbritiche terziarie del Sulcis (Sardegna sud-occidentale). Memorie della Società Geologica Italiana 45, 951–63.Google Scholar
Assorgia, A., Fadda, A., Gimeno Torrente, D., Morra, V., Ottelli, L. & Secchi, F. A. 1990b. Risultati preliminari sullo studio delle successioni vulcaniche terziarie del Sulcis (Sardegna sud-occidentale). 75º Congresso Nazionale della Società Geologica Italiana, 10–12 September 1990, Milano.Google Scholar
Aydar, E., Schmitt, A. K., Cubukcu, H. E., Akin, L., Ersoy, O., Sen, E., Duncan, R.A. & Atici, G. 2012. Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanology and Geothermal Research 213, 8397.CrossRefGoogle Scholar
Bachmann, O. & Bergantz, G. 2008. The magma reservoirs that feed supereruptions. Elements 4, 1721.Google Scholar
Beccaluva, L., Civetta, L., Macciotta, G. & Ricci, C. A. 1985. Geochronology in Sardinia: results and problems. Rendiconti della Società Italiana di Mineralogia e Petrologia 40, 5772.Google Scholar
Bertolio, S. 1895. Sulle comenditi, nuovo tipi di rioliti a aegirina (Nota preliminare). Rendiconti della Reale Accademia dei Lincei 4, 4850.Google Scholar
Best, M. G., Christiansen, E. H., Deino, A. L., Gromme, S., Hart, G. L. & Tingey, D. G. 2013. The 36–18 Ma Indian Peak-Caliente ignimbrite field and calderas, southeastern Great Basin, USA: Multicyclic super-eruptions. Geosphere 9, 864950.CrossRefGoogle Scholar
Boni, M., Del Vecchio, L. & Lirer, L. 1990. Considerazioni sul vulcanismo esplosivo Miocenico della Sardegna S-W. Memorie della Società Geologica Italiana 45, 9891000.Google Scholar
Branney, M. J. & Kokelaar, P. 1992. A reappraisal of ignimbrite emplacement: Progressive aggradation and changes from particulate to nonparticulate flow during emplacement of high-grade ignimbrite. Bulletin of Volcanology 54, 504–20.CrossRefGoogle Scholar
Branney, M. J. & Kokelaar, P. (eds) 2002. Pyroclastic Density Currents and the Sedimentation of Ignimbrites. Geological Society of London, Memoir no. 27, 143 pp.Google Scholar
Cassel, E. J., Calvert, A. T. & Graham, S. A. 2009. Age, geochemical composition, and distribution of Oligocene ignimbrites in the northern Sierra Nevada, California: implications for landscape morphology, elevation, and drainage divide geography of the Nevadaplano. International Geology Review 51, 723–42.Google Scholar
Cherchi, A. & Montadert, L. 1982. Oligo-Miocene rift of Sardinia and the early history of Western Mediterranean Basin. Nature 298, 736–9.Google Scholar
Cincotti, F., Assorgia, A., Fadda, A., Farns, M., Gimeno, D., Morra, V., Ottelli, L., Rizzo, R. & Secchi, F. A. 1992. Il Complesso Ignimbritico di Acqua Sa Canna (Sulcis, Sardegna SO), Riunione Scientifica. Ignimbriti Cenozoiche Sarde. Progetti Nazionale Murst 40%. Guida alle escursioni sui depositi piroclastici cenozoici sardi. Riconstruzione della storia evolutiva dei vulcani. Genesi ed evoluzione del magmatismo. Rapporti tra vulcanismo e tettonica. Sardegna, 9–12 Giugno 1992.Google Scholar
Cioni, R. & Funedda, A. 2005. Structural geology of crystal-rich, silicic lava flows: a case study from San Pietro Island (Sardinia, Italy). In Kinematics and Dynamics of Lava Flows (eds Manga, M. & Ventura, G.), pp. 114. Geological Society of America, Boulder, Special Paper no. 396.Google Scholar
Conte, A. M. & Dolfi, D. 2002. Petrological and geochemical characteristics of Plio-Pleistocene Volcanics from Ponza Island (Tyrrhenian Sea, Italy). Mineralogy and Petrology 74, 7594.Google Scholar
Conte, A. M., Palladino, D. M., Perinelli, C. & Argenti, E. 2010. Petrogenesis of the high-alumina basalt-andesite suite from Sant'Antioco Island, SW Sardinia, Italy. Periodico di Mineralogia 79, 2755.Google Scholar
Coulon, C. 1977. Le volcanisme calco-alcalin cénozoïque de Sardaigne: genèse des laves de la suite andésitique et des ignimbrites. Compte Rendu Sommaire des Séances de la Société Géologique de France 5, 269–72.Google Scholar
Di Vito, M. A., Sulpizio, R., Zanchetta, G. & D'Orazio, M. 2008. The late Pleistocene pyroclastic deposits of the Campanian Plain: New insights into the explosive activity of Neapolitan volcanoes. Journal of Volcanology and Geothermal Research 177, 1948.Google Scholar
Ellis, B. S., Branney, M. J., Barry, T. L., Barfod, D., Bindeman, I., Wolff, J. A. & Bonnichsen, B. 2012. Geochemical correlation of three large-volume ignimbrites from the Yellowstone hotspot track, Idaho, USA. Bulletin of Volcanology 74, 261–77.Google Scholar
Floyd, P. A. & Winchester, J. A. 1975. Magma type and tectonic setting discrimination using immobile trace elements. Earth and Planetary Science Letters 27, 211–8.Google Scholar
Freundt, A. & Schmincke, H. U. 1992. Mixing of rhyolite, trachyte and basalt magma erupted from a vertically and laterally zoned reservoir, composite flow P1, Gran Canaria. Contributions to Mineralogy and Petrology 112, 119.Google Scholar
Freundt, A. & Schmincke, H. U. 1995. Petrogenesis of rhyolite-trachyte-basalt composite ignimbrite P1, Gran Canaria, Canary Islands. Journal of Geophysical Research-Solid Earth 100, 455–74.Google Scholar
Freundt-Malecha, B., Schmincke, H. U. & Freundt, A. 2001. Plutonic rocks of intermediate composition on Gran Canaria: the missing link of the bimodal volcanic rock suite. Contributions to Mineralogy and Petrology 141, 430–45.Google Scholar
Garbarino, C., Lirer, L., Maccioni, L. & Salvadori, I. 1990. Carta vulcanologica dell'Isola di San Pietro (Sardegna). 1:25,000. Editor: SELCA, Firenze.Google Scholar
Gençalioglu-Kuscu, G. & Floyd, P. A. 2002. Geochemical correlations between effusive and explosive silicic volcanics in the Saraykent region (Yozgat), central Anatolia, Turkey. Geological Journal 37, 143–65.Google Scholar
Gimeno, D., Assorgia, A., Díaz, N. & Segura, C. 1996. Vitrófiros basales en flujos piroclásticos de composición riolítica: el caso de la unidad de Nuraxi (Sulcis, SE de la isla de Cerdeña, Italia). Geogaceta 20, 564–8.Google Scholar
Gimeno, D., Diaz, N., García-Vallés, M. & Martínez-Manent, S. 2003. Genesis of bottom vitrophyre facies in rhyolitic pyroclastic flows: a case study of syneruptive glass welding (Nuraxi unit, Sulcis, SW Sardinia, Italy). Journal of Non-Crystalline Solids 323 (1–3), 91–6.Google Scholar
Glazner, A. F., Nielson, J. E., Howard, K. A. & Miller, D. M. 1986. Correlation of the Peach Springs Tuff, a large-volume Miocene ignimbrite sheet in California and Arizona. Geology 14, 840–3.Google Scholar
Harangi, S., Mason, P. R. D. & Lukacs, R. 2005. Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: In situ trace element data of glass shards and mineral chemical constraints. Journal of Volcanology and Geothermal Research 143, 237–57.Google Scholar
Hildreth, W. & Mahood, G. 1985. Correlation of ash-flow tuffs. Geological Society of America Bulletin 96, 968–74.Google Scholar
Imai, N., Terashima, S., Itoh, S. & Ando, A. 1995. 1994 Compilation values for GSJ reference samples, igneous rock series. Geochemical Journal 29, 91–5.Google Scholar
Irvine, T. N. & Baragar, W. R. A. 1971. Guide to chemical classification of common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.CrossRefGoogle Scholar
Jutzeler, M., Schmincke, H. U. & Sumita, M. 2010. The incrementally zoned Miocene Ayagaures ignimbrite (Gran Canaria, Canary Islands). Journal of Volcanology and Geothermal Research 196, 119.Google Scholar
Kuno, H. 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bulletin Volcanologique 29, 195222.Google Scholar
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. & Zanettin, B. 1986. A chemical classification of volcanic rocks based on the Total Alkali-Silica diagram. Journal of Petrology 27, 745–50.Google Scholar
Leat, P. T., Jackson, S. E., Thorpe, R. S. & Stillman, C. J. 1986. Geochemistry of bimodal basalt subalkaline peralkaline rhyolite provinces within the Southern British Caledonides. Journal of the Geological Society 143, 259–73.CrossRefGoogle Scholar
Lebti, P. P., Thouret, J. C., Worner, G. & Fornari, M. 2006. Neogene and Quaternary ignimbrites in the area of Arequipa, Southern Peru: Stratigraphical and petrological correlations. Journal of Volcanology and Geothermal Research 154, 251–75.Google Scholar
Le Maitre, R. W., Batemman, P., Dudek, A., Keller, J., Lameyred, J., Le Bas, M. J., Sabine, P. A., Schmidt, R., Sorensen, H., Streckeisen, A., Wooley, R. A. & Zanettin, B. 1989. Classification of Igneous Rocks and Glossary of Terms. Recommendation of the International Union of Geological Sciences. Subcomission on the Systematics of Igneous Rocks. Oxford, London: Blackwell Scientific Publications, 193 pp.Google Scholar
Maccioni, L., Marchi, M. & Assorgia, A. 1990. Carta geopetrografica dell'Isola di Santo Antioco (Sardegna). 1:25,000. Editor: SELCA, Firenze.Google Scholar
MacDonald, G. A. 1968. Composition and origin of Hawaiian lavas. In Studies in Volcanology: A Memoir in Honour of Howel Williams (eds Coats, R. R., Hay, R. L. & Anderson, C. A.), pp. 477522. Geological Society of America, Boulder, Memoir no. 116.Google Scholar
McIntosh, W. C. 1991. Evaluation of paleomagnetism as a correlation criterion for Mogollon-Datil ignimbrites, southwestern New Mexico. Journal of Geophysical Research-Solid Earth and Planets 96, 13459–83.Google Scholar
Montigny, R., Edel, J. B. & Thuizat, R. 1981. Oligo-Miocene rotation of Sardinia - K-Ar ages and paleomagnetic data of Tertiary volcanics. Earth and Planetary Science Letters 54, 261–71.Google Scholar
Morra, V., Secchi, F. A. & Assorgia, A. 1994. Petrogenetic significance of peralkaline rocks from Cenozoic calc-alkaline volcanism from Sardinia, Italy. Chemical Geology 118, 109–42.Google Scholar
Mulas, M., Mundula, F. & Cioni, R. 2011. Stratigraphy of the rheomorphic, densely welded, Monte Ulmus ignimbrite (SW Sardinia, Italy). Acta Vulcanologica 23, 1726.Google Scholar
Mundula, F., Cioni, R. & Rizzo, R. 2009. A simplified scheme for the description of textural features in Welded Ignimbrites: the example of San Pietro Island (Sardinia, Italy). Bollettino della Società Geologica Italiana 128, 615–27.Google Scholar
Ort, M. H., de Silva, S. L., Jimenez, N., Jicha, B. R. & Singer, B. S. 2013. Correlation of ignimbrites using characteristic remanent magnetization and anisotropy of magnetic susceptibility, Central Andes, Bolivia. Geochemistry, Geophysics, Geosystems 14, 141–57.Google Scholar
Ort, M. H., Rosi, M. & Anderson, C. D. 1999. Correlation of deposits and vent locations of the proximal Campanian Ignimbrite deposits, Campi Flegrei, Italy, based on natural remanent magnetization and anisotropy of magnetic susceptibility characteristics. Journal of Volcanology and Geothermal Research 91, 167–78.Google Scholar
Orton, G. 1992. Geochemical correlation of Ordovician flow tuffs in North Wales. Geological Journal 27, 317–38.CrossRefGoogle Scholar
Pasci, S., Pioli, L., Pisanu, G., Rosi, M., Sale, V., Benvenuti, E. & Laurenzi, M. 2001. Tettonica e vulcanismo miocenici nel Sulcis (Sardegna SW), Geoitalia, III FIST Meeting, Chieti (Italy).Google Scholar
Pearce, N. J. G., Alloway, B. V. & Westgate, J. A. 2008. Mid-Pleistocene silicic tephra beds in the Auckland region, New Zealand: Their correlation and origins based on the trace element analyses of single glass shards. Quaternary International 178, 1643.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19, 290300.Google Scholar
Peate, I. U., Baker, J. A., Kent, A. J. R., Al-Kadasi, M., Al-Subbary, A., Ayalew, D. & Menzies, M. 2003. Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro-Arabian flood volcanism. Earth and Planetary Science Letters 211, 311–27.Google Scholar
Pioli, L., Lanza, R., Ort, M. & Rosi, M. 2008. Magnetic fabric, welding texture and strain fabric in the Nuraxi Tuff, Sardinia, Italy. Bulletin of Volcanology 70, 1123–37.Google Scholar
Pioli, L. & Rosi, M. 2005. Rheomorphic structures in a high-grade ignimbrite: The Nuraxi tuff, Sulcis volcanic district (SW Sardinia, Italy). Journal of Volcanology and Geothermal Research 142, 1128.Google Scholar
Rollet, N., Deverchere, J., Beslier, M. O., Guennoc, P., Rehault, J. P., Sosson, M. & Truffert, C. 2002. Back arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, Western Mediterranean. Tectonics 21, 26.Google Scholar
Santacroce, R., Cioni, R., Marianelli, P., Sbrana, A., Sulpizio, R., Zanchetta, G., Donahue, D. J. & Joron, J. L. 2008. Age and whole rock-glass compositions of proximal pyroclastics from the major explosive eruptions of Somma-Vesuvius: a review as a tool for distal tephrostratigraphy. Journal of Volcanology and Geothermal Research 177, 118.Google Scholar
Savelli, C. 1975. Datazioni preliminari col metodo K-Ar di vulcaniti della Sardegna sud-occidentale. Rendiconti della Società Italiana di Mineralogia e Petrologia 31, 191–8.Google Scholar
Séranne, M. 1999. The Gulf of Lion continental margin (NW Mediterranean) revisited by IBS: an overview. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (eds Durand, B., Mascle, L., Jolivet, L., Horváth, F. & Séranne, M.), pp. 2153. Geological Society of London, Special Publication no. 156.Google Scholar
Shane, P. 1998. Correlation of rhyolitic pyroclastic eruptive units from the Taupo volcanic zone by Fe-Ti oxide compositional data. Bulletin of Volcanology 60, 224–38.Google Scholar
Smith, R. K., Tremallo, R. L. & Lofgren, G. E. 2001. Growth of megaspherulites in a rhyolitic vitrophyre. American Mineralogist 86, 589600.Google Scholar
Speranza, F., Di Chiara, A. & Rotolo, S. G. 2012. Correlation of welded ignimbrites on Pantelleria (Strait of Sicily) using paleomagnetism. Bulletin of Volcanology 74, 341–57.CrossRefGoogle Scholar
Sumita, M. & Schmincke, H. U. 2013. Impact of volcanism on the evolution of Lake Van I: evolution of explosive volcanism of Nemrut Volcano (eastern Anatolia) during the past >400,000 years. Bulletin of Volcanology 75, 714.Google Scholar
Sumner, J. M. & Branney, M. J. 2002. The emplacement history of a remarkable heterogeneous, chemically zoned, rheomorphic and locally lava-like ignimbrite: ‘TL’ on Gran Canaria. Journal of Volcanology and Geothermal Research 115, 109–38.Google Scholar
Sumner, J. M. & Wolff, J. 2003. Petrogenesis of mixed-magma, high-grade, peralkaline ignimbrite ‘TL’ (Gran Canaria): diverse styles of mixing in a replenished, zoned magma chamber. Journal of Volcanology and Geothermal Research 126, 109–26.Google Scholar
Suzuki, T., Eden, D., Danhara, T. & Fujiwara, O. 2005. Correlation of the Hakkoda-Kokumoto Tephra, a widespread middle pleistocene tephra erupted from the Hakkoda Caldera, northeast Japan. Island Arc 14, 666–78.Google Scholar
Vidal-Solano, J. R., Cruz, R. L. S., Zamora, O., Mendoza-Cordova, A. & Stock, J. M. 2013. Geochemistry of the extensive peralkaline pyroclastic flow deposit of NW Mexico, based on conventional and handheld X-ray fluorescence. Implications in a regional context. Journal of Iberian Geology 39, 121–30.Google Scholar
Vigliotti, L. 2015. Magnetic properties of the Campanian Ignimbrite and the marine Y5 tephra layer. In The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes (eds Ort, M.H., Porreca, M. & Geissman, J.W.), pp. 227–38. Geological Society, London, Special Publications no. 396.Google Scholar
Walker, G. P. L. 1972. Crystal concentration in ignimbrites. Contributions to Mineralogy and Petrology 36, 135–46.Google Scholar
Watson, E. B. 1979. Zircon saturation in felsic liquids: experimental results and applications to trace element geochemistry. Contributions to Mineralogy and Petrology 70, 407–19.Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64, 295304.Google Scholar
Wilson, C. J. N. 1993. Ignimbritas y calderas: perspectivas históricas, ideas actuales y desarrollos futuros. In La Volcanología Actual (eds Martí, J. & Araña, V.), pp. 197275. Nuevas Tendencias. Consejo Superior de Investigaciones Científicas, Madrid.Google Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.Google Scholar
Wolff, J. A. 1985. The effect of explosive eruption processes on geochemical patterns within pyroclastic deposits. Journal of Volcanology and Geothermal Research 26, 189201.Google Scholar
Wolff, J. A. & Ramos, F. C. 2014. Processes in caldera-forming high-silica rhyolite magma: Rb-Sr and Pb isotope systematics of the Otowi Member of the Bandelier Tuff, Valles Caldera, New Mexico, USA. Journal of Petrology 55, 345375.Google Scholar
Supplementary material: File

Gisbert and Gimeno supplementary material

Gisbert and Gimeno supplementary material 1

Download Gisbert and Gimeno supplementary material(File)
File 21.1 MB
Supplementary material: File

Gisbert and Gimeno supplementary material

Gisbert and Gimeno supplementary material 2

Download Gisbert and Gimeno supplementary material(File)
File 31.7 KB
Supplementary material: File

Gisbert and Gimeno supplementary material

Gisbert and Gimeno supplementary material 3

Download Gisbert and Gimeno supplementary material(File)
File 513 KB
Supplementary material: File

Gisbert and Gimeno supplementary material

Gisbert and Gimeno supplementary material 4

Download Gisbert and Gimeno supplementary material(File)
File 26.6 MB