Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T09:05:40.023Z Has data issue: false hasContentIssue false

Further evidence for an impact origin of the Tsenkher structure in the Gobi-Altai, Mongolia: geology of a 3.7 km crater with a well-preserved ejecta blanket

Published online by Cambridge University Press:  14 August 2017

GORO KOMATSU*
Affiliation:
International Research School of Planetary Sciences, Università d'Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
JENS ORMÖ
Affiliation:
Centro de Astrobiologia, Instituto Nacional de Tecnica Aeroespacial, Ctra de Torrejon a Ajalvir, Km 4, 28850 Torrejon de Ardoz, Madrid, Spain
TOGOOKHUU BAYARAA
Affiliation:
Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, P.O. Box 152, Ulaanbaatar 51, Mongolia
TOMOKO ARAI
Affiliation:
Planetary Exploration Research Centre, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
KEISUKE NAGAO
Affiliation:
Geochemical Research Centre, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
YOSHIHIRO HIDAKA
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, Japan
NAOKI SHIRAI
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, Japan
MITSURU EBIHARA
Affiliation:
Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, Japan
CARL ALWMARK
Affiliation:
Department of Earth and Ecosystem Sciences, Division of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
LKHAGVA GERELTSETSEG
Affiliation:
Institute of Paleontology and Geology, Mongolian Academy of Sciences, Peace Avenue 63, P.O. Box 260, Ulaanbaatar 210351, Mongolia
SHOOVDOR TSERENDUG
Affiliation:
Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, P.O. Box 152, Ulaanbaatar 51, Mongolia
KAZUHISA GOTO
Affiliation:
International Research Institute of Disaster Science, Tohoku University Aoba 468-1, Aramaki, Aoba-ku, Sendai 980-0845Japan
TAKAFUMI MATSUI
Affiliation:
Planetary Exploration Research Centre, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan
SODNOMSAMBUU DEMBEREL
Affiliation:
Institute of Astronomy and Geophysics, Mongolian Academy of Sciences, P.O. Box 152, Ulaanbaatar 51, Mongolia
*
Author for correspondence: goro@irsps.unich.it

Abstract

The Tsenkher structure in the Gobi-Altai, Mongolia is a c. 3.7 km diameter crater with a well-preserved ejecta blanket. It has been hypothesized to be either of impact or volcanic origin in our previous work. Observations during our 2007 expedition and related sample analyses give further support for an impact origin. The evidence includes the presence of a structurally uplifted near-circular rim surrounded by an ejecta blanket, and abundant breccias, some of which are melt- and millimetre-scale spherule-bearing. Planar deformation features (PDFs) were found in one quartz grain in a breccia sample. Fe-rich grains are found in a vesicular melt sample that is also characterized by elevated platinum group element (PGE) abundances with respect to the sedimentary bedrock of the area (approximately an order of magnitude). Noble gas analysis of one breccia sample yielded an elevated 3He/4He value of (5.0±0.2) × 10−6. Although not conclusive alone, these geochemical results are consistent with a contribution of meteoritic components. A volcanic origin, in particular a maar formation, would require explanations for the unusual conditions associated with Tsenkher, including its large size occurring in isolation, the structurally uplifted rim and the lack of a bedded base surge deposit. A pronounced rampart structure observed at the eastern ejecta is also unusual for any volcanic origin. 40Ar–39Ar dating of a vesicular melt sample gives an age of the Tsenkher structure of 4.9±0.9 Ma. The rampart structure could provide insights into the formation of similar ejecta morphologies associated with numerous impact craters on Mars.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

present address: Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, South Korea

References

Academy of Sciences of The Mongolian People's Republic. 1990. National Atlas of the Mongolian People's Republic. Ulaanbaatar and Moscow: Academy of Sciences of the Mongolian People's Republic (in Mongolian).Google Scholar
Baker, V. R. 2014. Terrestrial analogs, planetary geology, and the nature of geological reasoning. Planetary and Space Science 95, 510.Google Scholar
Barlow, N. G., Boyce, J. M., Costard, F. M., Craddock, R. A., Garvin, J. B., Sakimoto, S. E. H., Kuzmin, R. O., Roddy, D. J. & Soderblom, L. A. 2000. Standardizing the nomenclature of Martian impact crater ejecta morphologies. Journal of Geophysical Research 105, 26733–8.Google Scholar
Barry, T. L., Saunders, A. D., Kempton, P. D., Windley, B. F., Pringle, M. S., Dorjnamjaa, D. & Saandar, S. 2003. Petrogenesis of Cenozoic basalts from Mongolia: evidence for the role of asthenospheric versus metasomatised lithospheric mantle sources. Journal of Petrology 44, 5591.Google Scholar
Bushenkova, N. A., Deev, E. V., Dyagilev, G. S. & Gibsher, A. A. 2008. The upper mantle structure and Cenozoic volcanism in Central Mongolia. Doklady Earth Sciences 418, 128–31.Google Scholar
Cunningham, D. 2005. Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen. Earth and Planetary Science Letters 240, 436–44.Google Scholar
Cunningham, W. D., Windley, B. F., Owen, L. A., Barry, T., Dorjnamjaa, D. & Badamgarav, J. 1997. Geometry and style of partitioned deformation within a late Cenozoic transpressional zone in the eastern Gobi Altai Mountains, Mongolia. Tectonophysics 277, 285306.Google Scholar
De Hon, R. A. 1965. Maare of La Mesa. In Southwestern New Mexico II (eds Fitzsimmons, J. P. & Balk, C. L.), pp. 204–9. New Mexico Geological Society 16th Annual Fall Field Conference Guidebook.Google Scholar
Derevianko, A. P., Olsen, J. W. & Tsevendorj, D. (eds) 2000. Archaeological Studies Carried Out by the Joint Russian-Mongolian-American Expedition in Mongolia in 1997 & 1998. Novosibirsk: Institute of Archaeology and Ethnography, Siberian Branch of the Russian Academy of Sciences.Google Scholar
Ebisawa, N., Sumino, H., Okazaki, R., Takigami, Y., Hirano, N., Nagao, K. & Kaneoka, I. 2004. Construction of I-Xe and 40Ar–39Ar dating system using a modified VG3600 mass spectrometer and the first I-Xe data obtained in Japan. Journal of the Mass Spectrometry Society of Japan 52, 219–29.Google Scholar
Emmons, R. C. 1943. The Universal Stage (With Five Axes of Rotation). Geological Society of America Memoir 8. New York: Geological Society of America, 205 pp.Google Scholar
Ferrière, L., Morrow, J. R., Amgaa, T. & Koeberl, C. 2009. Systematic study of universal-stage measurements of planar deformation features in shocked quartz: implications for statistical significance and representation of results. Meteoritics & Planetary Science 44, 925–40.Google Scholar
Fisher, R. V. & Waters, A. C. 1970. Base surge bed forms in maar volcanoes. American Journal of Science 268, 157–80.Google Scholar
French, B. M. 1998. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Houston: Lunar and Planetary Institute, 120 pp.Google Scholar
Geological Maps of Mongolia. 1990. Geological Maps of Mongolia (1:500000). Moscow: Glavgeologorazvedka (in Russian).Google Scholar
Gevrek, A. I. & Kazanci, N. 2000. A Pleistocene, pyroclastic-poor maar from central Anatolia, Turkey: influence of a local fault on a phreatomagmatic eruption. Journal of Volcanology and Geothermal Research 95, 309–17.Google Scholar
Grant, J. A. 1999. Evaluating the evolution of process specific degradation signatures around impact craters. International Journal of Impact Engineering 23, 331–40.Google Scholar
Grant, J. A., Koeberl, C., Reimold, W. U. & Schultz, P. H. 1997. Gradation of the Roter Kamm impact crater, Namibia. Journal of Geophysical Research 102, 16327–38.Google Scholar
Grieve, R. A. F. 1987. Terrestrial impact structures. Annual Review of Earth and Planetary Sciences 15, 245–70.Google Scholar
Gutmann, J. T. 1976. Geology of Crater Elegante, Sonora, Mexico. Geological Society of America Bulletin 87, 1718–29.Google Scholar
Jourdan, F., Moynier, F., Koeberl, C. & Eroglu, S. 2011. 40Ar/39Ar age of Lonar crater and consequence for the geochronology of planetary impacts. Geology 39, 671–4.Google Scholar
Kenkmann, T. & Schönian, F. 2006. Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics and Planetary Science 41, 1587–604.Google Scholar
Koeberl, C. 1998. Identification of meteoritic component in impactites. In Meteorites: Flux with Time and Impact Effects (eds Grady, M. M., Hutchinson, R., McCall, G. J. H. & Rothery, R. A.), pp. 133–53. London: The Geological Society.Google Scholar
Komatsu, G. 2007. Rivers in the Solar System: water is not the only fluid flow on planetary bodies. Geography Compass 1/3, 480502.Google Scholar
Komatsu, G., Brantingham, P. J., Olsen, J. W. & Baker, V. R. 2001. Paleoshoreline geomorphology of Böön Tsagaan Nuur, Tsagaan Nuur and Orog Nuur: the Valley of Lakes, Mongolia. Geomorphology 39, 8398.Google Scholar
Komatsu, G., Kumar, P. S., Goto, K., Sekine, Y., Giri, C. & Matsui, T. 2014. Drainage systems of Lonar Crater, India: contributions to Lonar Lake hydrology and crater degradation. Planetary and Space Science 95, 4555.Google Scholar
Komatsu, G. & Olsen, J. W. 2002. Geological and archaeological exploration of caves in Mongolia. Cave and Karst Science 29, 7586.Google Scholar
Komatsu, G., Olsen, J. W. & Baker, V. R. 1998. A possible impact crater structure in southern Mongolia. In Lunar and Planetary Science Conference XXVVI, Houston, Texas. Abstract #1226.Google Scholar
Komatsu, G., Olsen, J. W. & Baker, V. R. 1999. Field observation of a possible impact structure (Tsenkher Structure) in southern Mongolia. In Lunar and Planetary Science Conference XXX, Houston, Texas. Abstract #1041.Google Scholar
Komatsu, G., Olsen, J. W., Ormö, J., Di Achille, G., Kring, D. A. & Matsui, T. 2006. The Tsenkher structure in the Gobi-Altai, Mongolia: geomorphological hints of an impact origin. Geomorphology 74, 164–80.Google Scholar
Komatsu, G., Ori, G. G., Marinangeli, L. & Moersch, J. E. 2007 a. Playa environments on Earth: possible analogs for Mars. In The Geology of Mars: Evidence from Earth-Based Analogs (ed. Chapman, M. G.), pp. 322–48. Cambridge: Cambridge University Press.Google Scholar
Komatsu, G., Ori, G. G., Rossi, A. P., Di Lorenzo, S. & Neukum, G. 2007 b. Combinations of processes responsible for Martian impact crater “layered ejecta structures” emplacement. Journal of Geophysical Research 112, E06005. doi: 10.1029/2006JE002787.Google Scholar
Kumar, P. S., Head, J. W. & Kring, D. A. 2010. Erosional modification and gully formation at Meteor Crater, Arizona: insights into crater degradation processes on Mars. Icarus 208, 608–20.Google Scholar
Lehmkuhl, F. & Lang, A. 2001. Geomorphological investigations and luminescence dating in the southern part of the Khangay and the Valley of the Gobi Lakes (Central Mongolia). Journal of Quaternary Science 16, 6987.Google Scholar
Maloof, A. C., Stewart, S. T., Weiss, B. P., Soule, S. A., Swanson-Hysell, N. L., Louzada, K. L., Garrick-Bethell, I. & Poussart, P. M. 2010. Geology of Lonar Crater. Geological Society of America Bulletin 122, 109–26.Google Scholar
Melosh, H. J. 1989. Impact Cratering: A Geologic Process. New York: Oxford University Press, 245 pp.Google Scholar
Middleton, G. V. 1970. Experimental studies related to problems of flysch sedimentation. In Flysh Sedimentology in North America (ed. Lajoie, J.), pp. 253–72. Geological Association of Canada Special Paper no. 7.Google Scholar
Misra, S., Newsom, H. E., Prasad, M. S., Geissman, J. W., Dube, A. & Sengupta, D. 2009. Geochemical identification of impactor for Lonar crater, India. Meteoritics & Planetary Science 44, 1001–18.Google Scholar
Mouginis-Mark, P. J. 1981. Ejecta emplacement and modes of formation of Martian fluidized ejecta craters. Icarus 45, 6076.Google Scholar
Mouginis-Mark, P. J. & Baloga, S. M. 2006. Morphology and geometry of the distal ramparts of Martian impact craters. Meteoritics & Planetary Science 41, 1469–82.Google Scholar
Nakamura, A., Yokoyama, Y., Sekine, Y., Goto, K., Komatsu, G., Senthil Kumar, P., Matsuzaki, H., Kaneoka, I. & Matsui, T. 2014. Formation and geomorphologic history of the Lonar impact crater deduced from in situ cosmogenic 10Be and 26Al. Geochemistry, Geophysics, Geosystems 15 (8), 3190–7.Google Scholar
Nishiizumi, K., Kohl, C. P., Shoemaker, J. R., Arnold, J. R., Klein, J., Fink, D. & Middleton, R. 1991. In situ 10Be and 26Al exposure ages at Meteor Crater, Arizona. Geochimica et Cosmochimica Acta 55, 2699–703.Google Scholar
Official Development Assistance Project of The Czech Republic (ODAPCR). 2003. Geological and Geochemical Mapping of the Trans-Altai Gobi at a scale of 1:200,000 – Sheet K-47-III. Geological Survey in Mongolia, GEOMIN Cooperative Company Jihlava and the Office of Geological Investigation in Ulaanbaatar, 131 pp.Google Scholar
Ormö, J., Gomez-Ortiz, D., Komatsu, G., Bayaraa, T. & Tserendug, S. 2010. Geophysical survey of the proposed Tsenkher impact structure, Gobi Altai, Mongolia. Meteoritics & Planetary Science 45, 373–82.Google Scholar
Osae, S., Misra, S., Koeberl, C., Sengupta, D. & Ghosh, S. 2005. Target rocks, impact glasses and melt rocks from the Lonar impact crater, India: petrography and geochemistry. Meteoritics & Planetary Science 40, 1473–92.Google Scholar
Park, J.-W., Hu, Z., Gao, S., Campbell, I. H. & Gong, H. 2012. Platinum group element abundances in the upper continental crust revisited – new constraints from analyses of Chinese loess. Geochimica et Cosmochimica Acta 93, 6376.Google Scholar
Phillips, F. M., Zreda, M. G., Smith, S. S., Elmore, D., Kubik, P. W., Dorn, R. I. & Roddy, D. J. 1991. Age and geomorphic history of Meteor Crater, Arizona, from cosmogenic 36Cl and 14C in rock varnish. Geochimica et Cosmochimica Acta 55, 2695–8.Google Scholar
Poelchau, M. H., Kenkmann, T. & Kring, D. A. 2009. Rim uplift and crater shape in Meteor Crater: effects of target heterogeneities and trajectory obliquity. Journal of Geophysical Research 114, E01006. doi: 10.1029/2008JE003235.Google Scholar
Pouliquen, O. & Vallance, J. W. 1999. Segregation induced instabilities of granular fonts. Chaos 9, 621–9.Google Scholar
Reinhard, M. 1931. Universaldrehtischmethoden. Basel, Switzerland: Birkhäuser, 118 pp.Google Scholar
Schumm, S. A. 1988. Variability of the fluvial system in space and time. In Scales and Global Change (eds Rosswall, T., Woodmansee, R. G. & Risser, P. G.), pp. 225–50. New York: Wiley.Google Scholar
Sengör, A. M. C. & Natal'in, B. A. 1996. Paleotectonics of Asia: fragments of a synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, M.), pp. 486640. Cambridge: Cambridge University Press.Google Scholar
Shirai, N. & Ebihara, M. 2004. Chemical characteristics of a Martian meteorite, Yamato 980459. Antarctic Meteorite Research 17, 5567.Google Scholar
Shirai, N., Nishino, T., Li, X., Amakawa, H. & Ebihara, M. 2003. Precise determination of PGE in a GSJ reference sample JP-1 by ID-ICPMS after nickel sulfide fire assay preconcentration. Geochemical Journal 37, 531–6.Google Scholar
Stöffler, D. & Grieve, R. A. F. 1994. Classification and nomenclature of impact metamorphic rocks: a proposal to the IUGS Subcommission on the Systematics of Metamorphic Rocks. In Lunar and Planetary Science Conference XXV, Houston, Texas, pp. 1347–8.Google Scholar
Stöffler, D. & Grieve, R. A. F. 2007. Impactites. In Metamorphic Rocks: A Classification and Glossary of Terms, Recommendations of the International Union of Geological Sciences (eds Fettes, D. & Desmons, J.), pp. 8292. Cambridge: Cambridge University Press.Google Scholar
Stöffler, D. & Langenhorst, F. 1994. Shock metamorphism of quartz in nature and experiment: I. Basic observations and theory. Meteoritics 29, 155–81.Google Scholar
Sturkell, E. R. R. & Ormö, J. 1997. Impact-related clastic injections in the marine Ordovician Lockne impact structure, Central Sweden. Sedimentology 44, 793804.Google Scholar
Sturm, S., Wulf, G., Jung, D. & Kenkmann, T. 2012. Impact ejecta modeling of the Bunte Breccia Deposits of the Ries Impact Crater, Southern Germany. In 43rd Lunar and Planetary Science Conference, Texas. Abstract #1770.Google Scholar
Wada, K. & Barnouin-Jha, O. S. 2006. The formation of fluidized ejecta on Mars by granular flow. Meteoritics & Planetary Science 41, 1551–69.Google Scholar
Weiss, D. K. & Head, J. W. 2014. Ejecta mobility of layered ejecta craters on Mars: assessing the influence of snow and ice deposit. Icarus 233, 131–46.Google Scholar
Weiss, B. P., Pedersen, S., Garrick-Bethell, I., Stewart, S. T., Louzada, K. L., Maloof, A. C. & Swanson-Hysell, N. L. 2010. Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields. Earth and Planetary Science Letters 298, 6676.Google Scholar
Xiao, Z. & Komatsu, G. 2013. Impact craters with ejecta flows and central pits on Mercury. Planetary and Space Science 82–83, 6278.Google Scholar
Yarmolyuk, V. V., Kudryashova, E. A., Kozlovsky, A. M. & Savatenkov, V. M. 2007. Late Cretaceous–Early Cenozoic volcanism of southern Mongolia: a trace of the South Khangai mantle hot spot. Journal of Volcanology and Seismology 1, 127.Google Scholar